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SYNOPSIS

The simulation of mining in faulted ground was recently described by Crouch. His method is extended here to
enable a wide range of non-homogeneous mining problems to be modelled. Essentially, the boundary conditions at
geological interfaces are incorporated into the overall iterative solution, which is necessary if faults and joints are to
be modelled realistically. Two examples are given to demonstrate the method: the mining of coal a seam below a
thick dolerite sill, and the mining of a flat reef in close proximity to a vertical fault where hangingwall and footwall
rocks have different properties.

SAMEVATTING

Die nabootsing van mynbou in geskeurde grond is onlangs deur Crouch beskryf. Sy metode word hier verder uitge-
brei sodat verskillende niehomegene mynbou probleme ondersoek kan word. Dit word hoofsaaklik moontlik gemaak
deur die grensvoorwaardes by geologiese intervlakke in te sluit in die iteratiewe oplossing van die vergelykings, wat
noodsaaklik is indien verskuiwings en nate getrou nageboots moet word. Twee voorbeelde word gegee om die
metode te illustreer. Hulle is die afbou van 'n steenkoollaag onder 'n dik dolorietsoom en die afbou van 'n platrif in
die,opmiddellike omgewing van 'n vertikale verskuiwing waar die eienskappe van die rots in die dak verskil van die in
die vloer.

Introduction
The simulation of the mining of tabular deposits in

faulted ground was recently described by Crouch1. This
description concerned a two-dimensional treatment by
the displacement discontinuity method in the form of
the computer programme MINAP. The analysis re-
quired that the host rock containing the ore-body and
faults should be homogeneous, although the material
properties of the tabular ore-body and fault infill could
be specified arbitrarily. Typical applications of the
method are the determination of stresses and displace-
ments around service excavations, the delineation of
tensile zones, and the estimation of energy-release rates
and energy dissipation along faults. A major dis-
advantage of the approach described by Crouch1 is its
inability to take non-homogeneity into account. This
paper describes an extension of Crouch's programme
that permits the modelling of a wide range of non-
homogeneous problems. The theoretical background is
outlined, and two examples are described to illustrate
the application of the method.

Theoretical Background
All the discontinuities in the region of interest are

divided into straight displacement discontinuity ele-
ments. The discontinuities include faults, joints, reefs,
seams, and interfaces between geological horizons with
significantly different elastic properties. The normal,
shear-stress, and displacement discontinuity components
are assumed to be constant over each element, and a
system of equations is written linking these components
for each element with all the other elements. Stresses,
displacements, or displacement discontinuities can be
specified as boundary conditions. The unknown quan-
tities to be determined are the displacement discontinuity
components. Separate equations are written for the
stress and displacement boundary conditions. Crouch's
notation1 is used here for convenience.
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Let a and a be the induced normal and shear stresses,
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d and d the normal and shear displacement discontinuity
n s
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components, and u and u the normal and shear dis-
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placements at one or other of the displacement dis-
continuity surfaces at the element i. The equations
relating these quantities with the other elements are
given2 by
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where the A and B terms are the influence coefficients
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derived by Crouch2. As an example, A gives the shear
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stress induced at element i by the normal displacement
discontinuity component of element j. The A and B
coefficients are therefore termed stress and displacement
coefficients respectively. Equations (1) to (4) can be
rewritten in matrix form as

[a]=[A][d] (5)

[u]=[B][d] (6)

If the behaviour of joints or faults is governed by a
Mohr-Coulomb failure criterion, equations (5) and (6)
become non-linear and must be solved iteratively. An
efficient method of solution is that of successive over-
relaxation3. A sufficient but not necessary condition for
the convergence of the equations is that the matrices
[A] and [B] should be diagonally dominant; that is to
say, the diagonal elements of any row must be greater
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Substituting (9) into (7) and (8) and rearranging
1 4

(without the equations for u and u, which are not

specified) gives

11 12 1 1
A A 0 0 d a
21 22 33 34 2
A A -A -A d 0 . (10)
21 22 33 34 3 -
B B -B -B d 0

43 44 4 4
0 0 A A d a

in magnitude than the sum of the magnitudes of the
off-diagonal elements in the same row. The question of
diagonal dominance is important in what follows.

Consider the hypothetical problem of Fig. 1 in which
the two elastic subregions 1 and 2 have different elastic
properties. Equations (5) and (6) can be written for this
problem as follows: for subregion 1,
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and similarly for the a, u, d, and B terms.

ELEMENT I STRESSES SPECIFIED

SUBREGION

(

ELEMENT 2

The boundary conditions across the interface defined
by elements 2 and 3 in Fig. 1 are

2 3
U=u
2 3
a=a

. . . . . . . . . . . . . . . . . . (9)

22 33

As the Band B terms are equal in magnitude, and as
22 33

the A and A terms are approximately equal depending

on the values of the shear moduli2 in the two subregions,
equation (10) is not diagonally dominant and cannot in
general be solved by the method of successive over-
relaxation. They can also not be solved efficiently by
any elimination scheme such as Gaussian elimination
because of the non-linearities introduced by the Mohr-
Coulomb failure criterion.

It has been found that equations (10) can be solved
22

iteratively provided that the diagonal terms in A are
33

greater in magnitude than those of A. The following

algorithm assures this condition for a wide range of
problems when applied at each iteration for the solution.

(i) Calculate normal and shear displacements at the
interface of the stiff material.

INTERFACEELEMENT :3

SUBREGION 2

ELEMENT 4 STRESSES SPECIFIED

Fig. I-Hypothetical problem showing the Interface between two subreglons

226 JULY 1980 JOURNAL OF THE SOUTH AFRICAN INSTITUTE OF MINING AND METALLURGY



Non-homogeneous model Homogeneous model

Reference Uy ax ay Txy Uy ax ay Txy
point m MPs m MPa.

1 - 0,043 0,6 1,1 0 -0,039 1,0 0,4 0
2 - 0,044 0,5 1,4 0 -0,040 0,8 0,1 0
3 -0,044 -6,4 0,3 0 -0,042 0,3 -0,1 0
4 -0,044 -2,1 0,0 0 -0,044 -1,0 -0,1 0
5 0,056* 0 0 0 0,059* 0 0 0
6 +0,01l -1,4 0,3 0 +0,013 -0,2 0,2 0
7 -0,035 0,5 1,3 -0,1 -0,032 0,4 1,6 -0,3
8 - 0,034 -5,9 2,8 0,6 -0,030 0,0 2,9 0,0
9 -0,034 -5,0 6,4 1,6 -0,028 -0,4 4,6 0,5

10 -0,029 0,3 10,7 1,8
I

-0,023 0,8 9,4 2,0
II -0,01l - 12,9 -0,1 0,010 - 12,0 -0,4
12 -0,006 -0,5 9,2 -2,0 ' -0,003 0,7 8,6 -1,9

COMPARISON OF STRESSES AND DISCLACEMENTS FOR HOMOGENEOUS AND NON-HOMOGENEOUS ANALYSES

TABLE I

*Convergence

(ii) Use these displacements as boundary conditions for
the softer material.

(iii) Calculate induced normal and shear stresses at the
interface of the soft material.

(iv) Use these stresses as boundary conditions for the
stiffer material.

This algorithm has been successfully incorporated
into Crouch's MINAP programme to allow two-dimen-
sional, non-homogeneous mining problems to be
modelled.

A disadvantage of the above algorithm, however, is
that it is not possible to prevent rigid body motion of a
stiff subregion completely enclosed within a softer sub-
region uuless displacements in the stiff subregion are
specified separately. This restriction can, however, be

0 REFERENCE POINTS SCALE

SURFACE

overcome for many problems, as demonstrated by the
examples that follow.

Mining of a Coal Seam below a Dolerite Sill

Many South African coal mines have coal seams that
are overlain by thick dolerite sills. The stresses in these
sills and their effect on the stresses in and around the
coal seams are therefore of considerable interest. The
geometry used in the modelling of such a situation is
shown in F'ig. 2. The geometry and elastic properties
were chosen more to demonstrate the effects of non-
homogeneity than to model any particular situation.
The stresses and displacements for 12 reference points
are shown in Table 1, the locations of these reference
points being shown in Fig.2.
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Fig. 2-Coal seam extraction below a dolerite sill
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Fig. 3- Tabular excavation approaching a fault
--'

Although the displacement distributions are similar,
the homogeneous model fails to detect the very high
horizontal tension in the sill and overestimates the
zones of induced tension above the excavation.

Application to Gold Mining

The problem of mining through a dyke can be handled
in much the same way as the above problem, provided
that the displacements in the dyke are specified remote
from the mining. A second problem of interest is the
effect of different hangingwall and footwall rocks on
stress distributions and the behaviour of faults. Fig. 3
shows the idealized geometry for such a problem.
Constant field stresses of 30 MPa and 60 MPa were
applied in the horizontal and vertical directions re-
spectively. Elastic parameters for the hangingwall and
footwall were as follows:

Hangingwall: EI=50 000 MPa
VI=0,35

Footwall: E2=80 000 MPa
v2=0,20

The analysis showed that the normal stresses,
and hence the shear strengths, along the fault were the
same, within a few per cent, in both the hangingwall
and the footwall rocks. The shear displacements along
the fault were about 1,5 times greater in the hangingwall
than in the footwall. Consequently, to a first degree of
approximation, some 60 per cent of the energy dissipated
along the fault would be in the hangingwall.
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Discussion

In the first example, the non-homogeneity of the
problem had a marked effect on the stress distribution
but not upon the displacements, whereas in the second
problem the reverse was true. These examples demon-
strate the ease with which the displacement discontinuity
method can be applied to a wide range of non-
homogeneous mining problems. The interfaces between
geological subregions can also be subjected to a Mohr
Coulomb yield condition in the same way as that de-
scribed by Crouchl, and can also contain an infill of
finite thickness. Execution times for non-homogeneous
analyses are about 2 to4 times longer than for equivalent
homogeneous analyses. The alterations required to the
computer programme MINAP to permit the modelling
of non-homogeneous problems are minimal, and it is
believed that these changes constitute a useful improve-
ment to the already well-known programme. The pro-
gramme operates satisfactorily on a mini-computer,
making it a very practical analytical tool available to
small group users.
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