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Introduction

In the last decades the interest in charac-
terizing the froth surfaces in mineral flotation
has been growing because this information
allows one to monitor online the performance
of the process. One of most important charac-
teristics of the froth surface is the bubble size
distribution.

The measurement of the bubble diameter
or bubble diameter distribution of flotation
froth surfaces is not a trivial problem and only
a few algorithms designed to accomplish the
task have been developed for this application.
Evidently, bubble diameter distribution is more
important than mean diameter, because with
bubble diameter distribution it is possible to
estimate the carrying capacity with a better
approximation. 

The measurement of the mean bubble
diameter making use of conventional
mathematics is a ordinary task, but to perform
the job with a neural network model is less
studied. For example, it is interesting to know
what happens when the lens gets dirty and the
light intensity of the image decreases. These
issues are treated in this paper.  

The aim of this paper is to study the use of
ANN to estimate the mean bubble diameter
and the bubble size distribution of mineralized
froth surfaces, as well as to evaluate the
robustness of these models under conditions
of variable lighting intensity.

Background 

Process optimization is the interest of several
researchers devoted to studying image
analysis techniques and vision sensors.
Symonds and De Jager1 and Woodburn et al.2
reported the first work on vision sensors
applied to flotation control. The aim of these
studies was to identify the characteristics such
as texture, morphology and colour, of flotation
froths systematically. Unfortunately, their
systems were not used online due to
computing limitations.

Subsequently, Moolman et al.3 studied the
froth surface structure, and concluded that
bubble size is one of most important character-
istics of froth surfaces. Hargrave and Hall4
concluded that froths with a small bubble size
and a narrowed size distribution showed a
higher grade and mass flow rate compared to
froths with large bubbles and a wide size
distribution. Holtham and Nguyen5 presented
a statistical approach using the texture
spectrum method to measure both the bubble
size and froth structure. They stated that froth
structures can be related to variations in the
performance of the flotation process. As a
result of the studies conducted by the authors,
texture spectrum also provided a simple means
of estimating the average bubble size in a froth
image. 

A review of the literature related to neural
network applications in artificial visual
systems indicates that the utility of these
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models relies on their ability for pattern recognition, since
they simplify the computational complexity of image analysis,
as the image preprocessing generates a process computa-
tionally intensive. In other applications, artificial neural
networks have been used to complete complex tasks such as
mineral identification (Thomson et al.6), and particle size
estimation (Gupta et al.7). Shumsher and Daharam8

demonstrated the potential of hybrid neural networks for
online interpretation of froth images and flotation process
control.

In comparison with the available methods for images
analysis, ANN is a fast and efficient technique to compute
digitalized images, offering best performance for continuous
and generalized predictions; one inconvenience is the
requirement for an extensive database for the training. A
database is composed by a numerical matrix where each row
(set of inputs) corresponds to one line of pixels of the image,
and for each input knowledge of the respective output is
needed (reference diameter). 

Contrary to ANN advantages, some commercial software
used for bubble size estimation (i.e. Image Pro Plus®, Vision
library of MatLab®, Eclipse®), based on sequential analysis of
pixels, suffer from a slow and heavy numerical computation
process. There are several and well validated techniques,
used by the above mentioned software, to measure bubbles
diameter in bubbling reactors (Grau and Heiskanen9;
Hernández-Aguilar et al.10). These techniques work
adequately, for conditions where bubbles are close-to spheres
and surrounded by continuous phase (i.e. bubbling zone of
flotation cells). 

Apparatus and experimental methodology

The experimental programme was carried out in a 4-inch
diameter laboratory flotation column. Figure 1(a) shows the
instrumentation of the column. For froth surface image
acquisition, a video camera connected to a PC was installed at
a column height of 120 cm. In addition, an adequate chamber
was used for external light isolation. A 90-watt halogen lamp
was placed overhead at 80 cm from the overflow, making an
angle of 80° with respect to the surface of the froth. A
photocell was installed inside the chamber to register any
change in the lighting intensity. Figure 1(b) shows three
images of the surface of mineralized froths, showing different
bubble sizes.   

Sphalerite was used as floating mineral, and the pulp was
conditioned using methyl isobutyl carbinol as frother and
sodium isopropyl xanthate as collector. Sodium hydroxide
was used to regulate the pH of the flotation pulp. The frother
was added to a volume of 40 l of water, and the temperature
was set at 30°C. Next, 10.44 kg of sphalerite was added to
the solution, and the pH of the pulp was regulated to 
pH = 10. Subsequently, cupric sulphate was added to activate
the sphalerite and the flotation pulp was conditioned for 
15 minutes.

The test was initiated and all the flow rates were set to
the desired values. To make sure that the process had
reached steady state operation (i.e., closed circuit, that is,
recycling both concentrate and tails to conditioning tank), the
column was operated for a further 15 minutes before
sampling of the feed, concentrate and tailings. To avoid any
process disturbance, the feed rate was sampled at the end of

the test. This is because the feed pump was tied to the
automatic control loop of the froth level. A series of
photographs was taken during each set of experiments to
record the froth surface image. This procedure was repeated
for the different froth depths tested.

The bubble diameter was indirectly varied by controlling
bubble coalescence. This objective was attained by changing
the hydrophobicity of the particles using different collector
concentrations and by varying froth depth. 

Image data acquisition and ANN learning

Froth images were taken with an acquisition frequency of
0.145 s, using a Matlab® library. Images were subsequently
converted from colour (RGB) to gray scale images (BW). The
Image Pro® software was used to obtain manual bubble
diameter measurements, since the software is not capable of
performing the task automatically, when bubbles are not
isolated. This is the main reason for using ANN in the
characterization of froth surfaces. Note that manual bubble
diameter measurement becomes the reference mean diameter,
which will be subsequently used as the pattern diameter
during the ANN training. The first stage to obtain the
reference diameter (db average of image) was to define the border
of each bubble using a manual procedure, as shown in 
Figure 2(a). Once the bubble edge has been delineated
(raised hand), the software computes the arithmetic mean
diameter (see Figure 2(b)). This procedure was repeated for
all the bubbles of the image to obtain the reference or

▲
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Figure 1—(a) Experimental set-up. (b) Typical froth images
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measured bubble size distribution and the measured mean
diameter of the image. This was a tedious stage and is not
intended to be used as part of an online automatic method to
estimate the bubble size distribution of froth surfaces.  

Image Pro® software was also used to digitize the images
and to obtain the numerical matrix and, together with the
reference mean diameter, to compose the pattern that will be
learned by the ANN. Each datum of the numerical matrix is
proportional to the illumination of each pixel in the image, a
value of zero for black and 255 for white. Only a section of
each image with similar dimensions was selected for
numerical analysis. It should be noted that each image
produced a large numerical matrix, and therefore, in order to
avoid extremely large files, only every other data point was
selected. To take into account the information of the light
intensity with which the images were acquired, an extra
column was added to the numerical matrix of each digital
image. 

The architecture of the neural network trained in this
work was fed forward with 153 inputs (digitalized pixels of a
row of the image), one hidden layer with 138 neurons and
one neuron at the output layer (bubble diameter). A sigmoid
equation was used as the transfer function in each of the
nodes, and a unitary bias was input into the hidden layer.
The neural network training used a database containing 
4 992 patterns and a back propagation algorithm to learn the
relationships that exist between the inputs and the outputs. 

Results

The mineralized froth images were obtained at different
luminosity intensities, which were easily obtained by
changing the lens aperture, in order to simulate external light
intensity changes. Typical images are shown in Figure 3,
clearly showing the gradation in the darkness of the images.
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Figure 2—(a) Illustration of the method used to calculate the reference
bubble diameter of the bubbles in the froth surface. (b) A high contrast
image of the froth surface

Figure 3—Images taken at different light intensities
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Figure 4 shows that for each row of the digitalized image
(i.e., a row of the numerical matrix), a brightness pattern
exists (gray intensity versus pixel number). On examination
of the figure, it is apparent that the intensity of the peaks
denotes the brightness of the bubble and the amplitude is
related to the bubble diameter. Comparing Figures 4(a) and
4(b), it is observed that the amplitude of the peaks and
valleys are associated with the bubble diameter, whereas the
number of peaks is associated with bubbles number. This
type of pattern was interpreted by the neural model to
estimate the bubble diameter.

The neural network estimates the average diameter for
each input, i.e., for each row of the numerical matrix. After
the neural network processing was completed for all the rows
of an image, a number of estimated diameters were generated
(see Figure 5 (a)). The reason is that for each image with a
given mean diameter (db reference for image), several estimated
diameters are calculated (see Figure 5(b)). The next step was
to calculate the arithmetic mean of the estimated diameters.
The explanation of this estimated diameter dispersion is that
when one scans a row, a bubble is detected and the distance
between its left and right limits is determined. However, this
represents the diameter only if it cuts the bubble at its centre.
When one scans the next row, the same bubble is observed
but the distance between its left and right limits may be
different from the one measured in previous row. As a
consequence, a dispersion of the estimated bubble diameters
is obtained. 

Neural network performance with different lighting
conditions

The first challenge was to test the ANN trained using images
with different bubble diameters and a constant illumination
intensity to predict the bubble diameters of images obtained
with different illumination intensities. The results of this test
contained errors, as the learned patterns (images with
constant illumination) were not sufficient to interpret images
obtained at different illumination intensities. For this
analysis, the training was executed with a database of images
with high light intensity, while the test performed predicts the
mean bubble diameter of images of low illumination. Figure 6
(a) presents a significant dispersion between measured and
estimated bubble diameters, even though the best results are
those with higher illumination. Figure 6 (b) plots the
correlation factor as a function of light intensity, showing a
high correlation for images with smaller equivalent lens
aperture. This is because the neural network model was
trained to recognize images with high illumination intensity
(i.e. smaller equivalent lens aperture), but it is unable to
interpret images with different degrees of lighting.

▲
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Figure 4—Brightness versus pixel number in a row of the digitalized
images (input for ANN). (a) For large bubbles and (b) for small bubbles

Figure 5—(a) Definition of the measured value of db(average of image) and
the estimated value of dbn (ANN prediction for row). (b) The actual estimated
and measured diameters. Note that for any given measured value there
are several estimated values (the same number of analysed rows)
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The second test was to carry out ANN learning using
images of froths with different grades of illumination, and
with froth bubble diameters between 3 and 13 mm. In this
case, the additional information included in the training
pattern database was the lighting intensity, which is
equivalent to the lens aperture. After this training, the ANN
was used to predict bubble diameters from data contained in
images that were not included in the training database. The
assessed database included a numerical matrix comprising 
4 992 rows and 153 columns.

Figure 7(a) shows a test of the training results, showing
a high regression factor (R2 = 0.96) between the predicted
and the reference values. Nevertheless, the results of this
figure should be interpreted with caution, since the training
data and testing database were the same (5 622 patterns).
Figure 7(b) shows the validation results, i.e., for a case
where the test was accomplished using a different database
(4 992 patterns) to that use training data. Again, the results
show a high regression factor (R2 = 0.91) between the
measured and estimated diameters, allowing one to draw the
conclusion that ANN is reliable enough for image analysis to
predict froth diameters.

The bubble diameter distributions were obtained by
taking into consideration the diameters estimated from the
rows of the numerical matrix analysed by the ANN (see
Figure 5). Figure 8 (a) shows three size distributions
estimated by the model, and Figure 8 (b) shows the
corresponding size distributions obtained manually. These
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Figure 6—(a) Measured and estimated bubble diameters when ANN was
trained with images of constant illumination and tested with images of
different illumination intensities. (b) Correlation factor as a function of
light intensity

Figure 7—Correlation between measured and predicted bubble
diameters. (a) Training results, and (b) validating results

Figure 8—(a) Bubble size distribution estimated by ANN. (b) Bubble size
distribution obtained by manual measurements
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data were fitted to a Gaussian distribution for a better
interpretation. Comparing Figures 8 (a, b), it is observed that
even though bubble size distributions estimated and
measured are similar, the measured ones are slightly smaller
than the estimated ones. This bias is also observed in 
Figures 7 (a, b).

Conclusion

Neural network models can easily estimate the main bubble
diameter and bubble size distribution of froth surfaces. In
this application, it is important to convert the images from
colour to gray scale, to normalize the information to be
processed by the ANN. To achieve successful ANN training, it
is necessary to have a large database that includes froth
images with several different bubble diameter distributions.
In addition, when large variations in luminosity are expected,
the training database should contain information on the light
intensity (e.g., the output of a photocell sensor in this work).
Otherwise, the performance of ANN models is susceptible to
error. The best results were obtained using an ANN with 153
inputs, a hidden layer with 138 neurons, a sigmoidal transfer
function, and a unitary bias for each layer.
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