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Introduction

Cut-off grade is the criterion that discriminates
between ore and waste within a given mineral
deposit1,2. If material grade in the mineral
deposit is above cut-off grade it is classified as
ore, and if material grade is below cut-off
grade, it is classified as waste. Ore, being the
economically exploitable portion of the mineral
deposit, is sent to the processing plant for
crushing, grinding, and concentration of the
metal content. The product of the processing
plant is called concentrate, which is fed to the
refinery for production of refined metal. Hence,
an ideal open pit mining operation consists of
three stages i.e. mine, processing plant, and
refinery3,4. 

Long-range production planing of an open
pit mining operation is dependent upon several
factors; however, cut-off grade is the most
significant aspect, as it provides a basis for the
determination of the quantity of ore and waste

in a given period5. Eventually, the profit over
time may be enhanced only by flow of high
grade material to the processing plant. This
strategy supports the objective function and,
depending upon the grade-tonnage distri-
bution of the deposit, higher NPV may be
realized during earlier years to recover the
initial investment6,7. However, as the deposit
becomes depleted, the NPV as well as the cut-
off grade decline; hence, cut-off grade policy
and the production plan defined as a result of
this policy dictate phenomenal influence on the
overall economics of the mining operation8,9.

The optimum cut-off grades, which are
dynamic due to the declining effect of NPV, not
only depend on the metal price and cash costs
of mining, processing, and refining stages, but
also take into account the limiting capacities of
these stages and grade-tonnage distribution of
the deposit. Therefore, the technique that
determines the optimum cut-off grade policy
considers the opportunity cost of not receiving
future cash flows earlier during mine life, due
to the limiting capacities of any of mining,
processing, or refining stages10,11. However,
metal price and operating costs of mining,
processing, and refining change during mine
life, and this happens quite often, due to the
longer life of most of the open pit mining
operations. Ignoring the effect of these
changes in the economic parameters on the
optimum cut-off grade policy would lead to
unrealistic production plans12,13.

Further, the declining effect of NPV allows
higher cut-off grades in the early years of mine
life and lower cut-off grades in the later years,
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due to depletion of high grade material. Therefore, depending
upon the existing circumstances in an open pit mining
operation, the production plans may also include the
flexibility of providing stockpiles of low grade ore mined in
the earlier years to be processed later as it becomes
economical to do so. This enhances not only the life, but also
the NPV of a mining operation. The management of
stockpiles of low grade ore is possible using the following
two options14:

1. The stockpile is utilized parallel to the mining
operation. This means that material is sent to the
processing plant either from mine or stockpile. This
decision is based on the overall economy/profitability
of the operation.

2. The stockpile is utilized after the mine is exhausted.
This simplifies the decision-making, since the stockpile
acts as an additional portion of the deposit, where all
available material is economical. However, the high
grade material in the stockpile is scheduled to be
utilized earlier than the low grade material.

In this study, the second case is chosen owing to ease of
operation. Therefore, keeping in view the prospect of a contri-
bution to the mining industry, we propose an extension in
the established Lane’s theory of optimum cut-off grades15,16.
The proposed cut-off grade optimization model considers not
only dynamic metal price and cost escalation, but also results
in the creation of a stockpile of low grade ore during the mine
life and its utilization as ore after the exhaustion of the
deposit. Lane’s original theory has been modified by
Dagdelen3,4, Dagdelen and Kawahta6, Bascetin9, Osanloo and
Ataei11, Asad12,13,14, Dagdelen and Asad17, Ataei and
Osanloo18, Osanloo et al.19, and King20, but these studies did
not attempt to analyse the combined impact of economic
parameters escalation and stockpiling on NPV. We implement
the iterative algorithmic steps of the modified model in Visual
C++ programming language to develop alternative cut-off
grade policies in a case study of a hypothetical copper
deposit. The results demonstrate the effect of the change in
economic parameters and the stockpiling option on mine
planning with an increase/decrease in NPV.

The model

Prerequisites for the application of a cut-off grade
optimization model include the development of ultimate pit
limit or pit extent and pushback (a manageable portion of the
deposit inside the ultimate pit limit that may be mined,
processed, and refined in a number of years/periods) design,
ore reserves in terms of mineral grade and tonnage distri-
bution in each pushback, and mining, processing, and
refining stage capacities, the operating costs of these stages,
and the current metal price.

The objective function of cut-off grade optimization
model is to maximize the NPV of the operation subject to
mining, processing, refining, and stockpile capacity
constraints, which may be represented mathematically as
follows:

[1]

Subject to:

[2]

[3]

[4]

[5]

Here, 

[6]

where n = period (year) indicator, N = total life of operation
(years), Nm = mine/deposit life (years), P = profit ($/year), 
d = discount rate (%), M = mining capacity (tons/year), C =
concentrating or milling capacity (tons/year), R = refining
capacity (tons /year), S = stockpile capacity (tons), p = metal
selling price ($/ton of product), m = mining cost ($/ton of
material mined), c = concentrating or milling cost ($/ton of
ore), r = refining cost ($/ton of product), f = administrative/
fixed cost ($/year), Qm = quantity of material mined
(tons/year), Qc = quantity of ore processed (tons/year), 
Qr = quantity of concentrate refined (tons /year), Qs =
quantity of material stockpiled (tons/year).

The model relies on the fact that the capacities of the
mining, processing, and refining stages limit the operation
either independently or jointly. While an individual stage
causes constrained production, it leads to the determination
of refinery limiting economic cut-off grades for mining,
processing, and refining, represented as γm, γc, and γr, respec-
tively. However, if a pair of stages is limiting the operation,
then the output from each constraining stage must be
balanced to utilize the maximum capacity of these stages.
This requires the determination of three balancing cut-off
grades pairing mine–processing plant, mine–refinery, and
processing plant–refinery, represented as γmc, γmr, and γcr,
respectively. Ultimately, the optimum cut-off grade γ is
selected between the limiting economic and balancing cut-off
grades.

As the grade and amount of low grade stockpile material
in a period n is also dependent upon the determination of
optimum cut-off grade, the solution to this problem may be
presented in two sequential steps. The first step determines
the optimum cut-off grade, and the second step defines the
grade and amount of stockpile material.

Optimum cut-off grade

Dynamic metal prices and operating costs influence limiting
economic cut-off grades, while the grade-tonnage distribution
of the deposit is the only factor affecting balancing cut-off
grades13. The optimum cut-off grade among six limiting
economic and balancing cut-off grades is calculated as
follows:

Assuming that the grade-tonnage distribution of a
pushback consists of K grade increments i.e. (γ1, γ2), (γ2, γ3),
(γ3, γ4), – – –, (γK–1, γK), and, for each grade increment, there
exist tk tons of material. In general, if k* represents grade
increment (γk, γk+1) and the lower grade in k* i.e. γk is

�
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considered as the cut-off grade, then quantity of ore to,
quantity of waste tw, and the average grade of ore γ– are the
given in Equations [7], [8], and [9]:

[7]

[8]

[9]

If y is the metallurgical recovery, then Qmn, Qcn, and Qrn
are sequentially determined according to any one of the
following three conditions:

1. Set:

2. If Qcn > C or Qrn > R from condition 1, then set:

3. If Qrn > or Qmn > M from condition 2, then set:

Mining the next Qmn amount of material may require
time τ. For calculating the profit generated from Qmn at the
end of time τ, Equation [6] may be updated as:

[10]

Since the objective function is to maximize the NPV of
future profits, assuming that ς is the maximum possible net
present value of future profits at time zero (i.e. now) and Ω is
the maximum possible net present value of future profits
(Pτ+1 to PN) at time τ, then the scenario may be presented as
shown on the time diagram in Figure 121.

Knowing the discount rate d:

[11]

[12]

The increase in present value ν is realized through
mining the next Qmn of material and the difference of ς and
Ω represents this increase. Knowing that τ is the short
interval of time, Equation [12] may be written as:

[13]

Substituting Equation [10] into Equation [13] yields the
basic present value expression that dictates the calculation of
the limiting economic cut-off grades: 

[14]

Mining, processing, or refining capacities define time τ,
leading to three values depending upon the actual con-

straining capacity i.e.
M
Qmn,

C
Qcn, or

R
Qcnγ–y

, respectively. 

Substituting these values into Equation [14] generates the
basic equations for limiting economic cut-off grades:

[15]

[16]

[17]

In Equation [15], the mine has a bottleneck that limits
the operation and therefore delays the opportunity of
achieving future positive cash flows. Hence, the opportunity 

cost
M

fn + dς is distributed per ton of material mined. In this 

scenario, ore may be processed and refined as soon as
material is mined. Therefore, cut-off grade should be such
that the processing and refining costs are covered. This
shows that every unit of material for which [(pn – rn)γmy] is
greater than the processing cost cn, should be classified as
ore. Thus, the mine limiting cut-off grade, which invokes
constraint 1 (Equation [2]), becomes:

[18]

Similarly, in Equation [16] the processing plant has a
bottle-neck that delays the operation, and the opportunity 

cost
C

fn + dς 
is distributed per ton of ore processed. The cut-off 

grade is chosen such that in addition to processing and
refining costs, it pays the opportunity cost of not receiving
the future cash flows. Thus, the processing plant limiting cut-
off grade, which invokes the second constraint (Equation
[3]), becomes:

[19]

Also, in Equation [17] the refinery is responsible for
delaying the future cash flows, and the opportunity cost

R
fn + dς is distributed per unit of concentrate refined. 

Therefore, the refinery limiting cut-off grade, which invokes
the third constraint (Equation [4]), becomes:
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Figure 1—Time diagram of present value of future profits at time zero
and τ

Pn + Ως PN

N0

Pτ+1

τ τ+1
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[20]

The balancing cut-off grades depend upon the grade
tonnage distribution of an individual pushback. Therefore,
these cut-off grades are deduced from the grade-tonnage
distribution curves representing quantity of ore per unit of
material mined, recoverable metal content per unit of material
mined, and the recoverable metal content per unit of ore, as
given in Figures 2, 3, and 4, respectively. 

The mine and processing plant balancing cut-off grade is
the one which invokes the first and second constraints
(Equations [2] and [3]). The mine and processing plant will
be in balance when quantity of ore per unit of material mined
equals the ratio C/M. 

For the grade category k*, the ratio of ore tons to total
tons mined, represented as mc(k*) is:

[21]

Knowing this ratio, the mine and processing plant
balancing cut-off grade is determined from the curve
presented in Figure 2. As ratio C/M lies between mc(k*) and
mc(k*+1) on the y-axis, the corresponding value on the x-
axis representing the mine and processing plant balancing
cut-off grade γmc is determined by linear approximation as
follows:

[22]

Similarly, the mine and refinery balancing cut-off grade is
the one that invokes the first and third constraints
(Equations [2] and [4]). The mine and refinery will be in
balance when the recoverable metal content per unit of mined
material equals the ratio R/M. 

For the grade category k*, the ratio of recoverable metal
content to the total tons mined, represented as mr(k*) is:

[23]

Knowing this ratio, the mine and refinery balancing cut-
off grade is determined from the curve presented in Figure 3.
As ratio R/M lies between mr(k*) and mr(k*+1) on the y-
axis, the corresponding value on the x-axis representing the
mine and refinery balancing cut-off grade γmr is determined
by linear approximation as follows:

[24]

Also, the processing plant and refinery balancing cut-off
grade is the one that invokes the second and third constraints
(Equations [3] and [4]). Therefore, the processing plant and
refinery will be in balance when the recoverable mineral
content per unit of ore equals the ratio R/C. 

For the grade category k*, the recoverable metal,
represented as cr(k*) is:

[25]

Knowing cr(k*), the processing plant and refinery
balancing cut-off grade is determined from the curve
presented in Figure 4. As ratio R/C lies between cr(k*) and

�
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Figure 4—Grade-tonnage curve for processing plant and refinery
balancing cut-off grade

Figure 2—Grade-tonnage curve for mine and processing plant
balancing cut-off grade

Figure 3—Grade-tonnage curve for mine and refinery balancing cut-off
grade



cr(k*+1) on the y-axis, the corresponding value on x-axis
representing the processing plant and refinery balancing cut-
off grade γcr is determined by linear approximation as
follows:

[26]

Once the three limiting economic cut-off grades i.e. γm, γc,
and γr, and three balancing cut-off grades i.e. γmc, γmr, and γcr
are determined, the optimum cut-off grade γ is selected from
among them. The equations of limiting economic cut-off
grades reveal that for a mining operation, the optimum cut-
off grade may never be less than γm, since it represents the
lowest (break even) cut-off grade. Also, the optimum cut-off
grade may never exceed γc, since this may schedule some of
the valuable ore to the waste dumps. Therefore, the optimum
cut-off grade γ lies between γm and γc i.e. γm ≤ γ ≤ γc. If m

~

represents the median value, then the following criterion
dictates the selection of the optimum cut-off grade:    

[27]

Creation of stockpiles

The creation of stockpiles follows the determination of the
optimum cut-off grade γ. The optimum cut-off grade classifies
the following:

1.  The material above optimum cut-off grade i.e. tons of
ore to(γ). This material is sent to the processing plant

2.  The intermediate grade stockpile material i.e. tons of
potential ore between the lowest cut-off grade γ1 and
the optimum cut-off grade γ, represented as ts(γ1, γ)

3.  The material below the lowest cut-off grade γ1 i.e. tons
of waste tw(γ1). This material is sent to the waste
dumps.

As described in the previous section, the grade-tonnage
distribution of the pushback consists of K grade increments
i.e. [γ1, γ2], [γ2, γ3], [γ3, γ4],.......,[γK-1, γK], where each grade
increment of a pushback consists of tk tons of material. If the
optimum cut-off grade γ exists in the k′ grade increment i.e.
[γk′, γk′+1], and the lowest cut-off grade γ1 exists in k′′ grade
increment i.e. [γk′′, γk′′+1] and assuming that optimum cut-off
grade γ = γk′ and lowest cut-off grade γl = γk′′, then:

[28]

[29]

[30]

[31]

If T represents the total available tons in the pushback,
then:

[32]

Similarly, the quantities mined Qmn, processed Qcn, and
refined Qrn may be defined as a function of optimum cut-off
grade γ using the three conditions given in the previous
section.

The grade-tonnage distribution of stockpiles i.e. the grade
increments and available tons in each grade increment is
deduced from the grade-tonnage distribution of the
pushback. If α represents the difference between the lowest
cut-off grade increment i.e. k′′ and that of optimum cut-off
grade increment i.e. k′, then:

[33]

Now, if α > 0, then the stockpile tons for respective grade
increments are determined using Equations [34], [35], and
[36]:

1.  The tons of material in the first stockpile grade
increment, which is same as that of lowest cut-off
grade, i.e. k′′, may be determined as:

[34]

2.  The tons of material in stockpile grade increments
from (k′′+1) to (k′-1), represented as k′′′, are:

[35]

3.  The tons of material in the last stockpile grade
increment, which is same as that of the optimum cut-
off grade, i.e. k′, may be determined as:

[36]

Similarly, if α = 0, i.e. the lowest cut-off grade and the
optimum cut-off grade exist in the same grade increment,
which may be represented as k′′′′, then the tons of material in
the stockpile only grade increment are:

[37]

A demonstration of the computations presented in
Equations [34], [35], [36], and [37] is offered through an
example in the next section.  

Copper deposit case study

Consider a hypothetical copper deposit divided into three
pushbacks15. Table I presents capacities, price of copper,
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operating costs, and escalation rates for this open pit mining
operation. Table II gives the grade-tonnage distribution
within ultimate pit limits for all three pushbacks.

The process of determination of the optimum cut-off
grade and the creation of stockpiles presented in the previous
sections is computation-intensive; therefore a dialogue-based
application in Visual C++ implementing the iterative
algorithmic steps is used for the development of optimum
cut-off grade policies in this case study. The algorithmic
iterations continue in anticipation of the NPV convergence,
i.e. the calculation of the optimum cut-off grade for a period n
is repeated until no further improvement in NPV is possible.
A description of these steps is as follows:

1.   Set n to 1 and iteration i to 1
2.   Compute available reserves Qn. If Qn = 0, then go to

step 10, otherwise go to next step
3.   If i = 1, set V to 0
4.   Set ς = V
5.   Compute:

a.  γm, γc, γr, γmc, γmr, and γcr
b.  γ using Equation [27]
c.   to(γ), tw(γ), and γ–(γ) using Equations [7], [8],

and [9], respectively
d.   Qmn, Qcn, and Qrn using the conditions

described in the model
e.   N based on the limiting capacity identified in

step 5(d)
f.   Pn using Equation [10]

Pn((1+d)N-1)
g.  V =  

d(1+d)N
.

6.    If i = 1, check for ς convergence (i.e. compare V (step
5(g)) with previous V (step 4). If ς is converged
(within some tolerance, say $500 000.00), then go to
step 7, otherwise go to step 4

7.    Knowing γ, compute stockpile grade-tonnage distri-
bution using Equations [34], [35], [36], and [37]

8.    Knowing that Qmn is mined and Qcn is processed,
adjust the grade-tonnage distribution of the deposit

9.    Set n = n + 1 , go to step 2
10.  If i = 1, then knowing Pn from period 1 to N, find the

Ωn i.e. present value of future cash flows at period n,
and go to step 11. If i = 2, then stop

11.  Compute the optimum cut-off grades policy using ς =
Ωn for corresponding year n, and go to step 4.

The steps in the algorithm generate alternative policies
presented in Tables III, and IV. Table III shows the optimum
policy without escalation and stockpile consideration. As
indicated in Table III, the optimum cut-off grade in year 1 is
0.50%. At this cut-off grade, 17.85 million tons of material is
mined, and 10 million tons of ore is processed which results
in 90 000 tons of refined copper. Hence, the operation has
excess mining capacity, while processing plant and refinery
are limiting the operation. Therefore, 0.50% optimum cut-off
grade refers to the processing plant and refinery balancing
cut-off grade (Equation [26]). This pattern continues until
year 6, and it is worth mentioning that in the same year the
reserves in pushback 1 are exhausted and mining from
pushback 2 is commenced. From year 7 through year 10,
mine and processing plant are limiting the operation and the
0.53% optimum cut-off grade refers to mine and processing
plant balancing cut-off grade (Equation [22]). It is worth
clarifying that from one year to next, the grade-tonnage
distribution dictating the balancing cut-off grades is adjusted
uniformly (i.e. without any change in the structure of distri-
bution) among the intervals. Consequently, the optimum cut-
off grade corresponding to the limitation of similar pair of
stages remains constant as observed from years 1 to 6 and
years 7 to 10. Similarly, from year 11 to the life of operation,
i.e. year 17, the flow of material from the mine to refinery is
limited due to full utilization of the processing plant capacity.
Hence, the optimum cut-off grade during these years refers to
the processing plant limiting economic cut-off grade
(Equation [19]), and it is declining with exhaustion of the
reserves and a consequent decline in the present value of the
remaining reserves. The objective function, i.e. maximum
NPV of the open pit mining operation, is predicted to be 
$735 770 000 as shown in the optimum policy in Table III.

Table IV presents the optimum policy allowing escalation
of economic parameters without the stockpiling option. The
price escalation is 0.80% per year, which indicates that in
year 1 the metal price is $2100.00 per ton of copper.
However, it escalates to $2405.00 per ton of copper in year

�
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Table II

Grade-tonnage distribution of copper deposit

Copper  (%) Tons
Pushback 1 Pushback 2 Pushback 3

0.00–0.15 14 400 000 15 900 000 17 900 000
0.15–0.20 4 600 000 5 100 000 5 500 000
0.20–0.25 4 400 000 4 900 000 5 400 000
0.25–0.30 4 300 000 4 700 000 5 300 000
0.30–0.35 4 200 000 4 500 000 4 900 000
0.35–0.40 4 100 000 4 400 000 4 700 000
0.40–0.45 3 900 000 4 300 000 4 600 000
0.45–0.50 3 800 000 4 100 000 4 500 000
0.50–0.55 3 700 000 3 900 000 4 200 000
0.55–0.60 3 600 000 3 800 000 3 900 000
0.60–0.65 3 400 000 3 600 000 3 800 000
0.65–0.70 3 300 000 3 500 000 3 700 000
> 0.70 42 300 000 37 300 000 31 600 000

Table I

Economic parameters and operational capacities

Parameter Unit Quantity

Mine capacity tons/year 20 000 000
Mill capacity tons/year 10 000 000
Copper refining capacity tons/year 90 000
Stockpile capacity tons 60 000 000
Price of copper $/ton 2100.00
Mining cost $/ton 1.05
Milling cost $/ton 2.66
Refining cost $/ton 100.00
Fixed cost $/ton 4 000 000
Copper price escalation %/year 0.80
Mining cost escalation %/year 2.50
Milling cost escalation %/year 3.00
Refining cost escalation %/year 2.50
Fixed cost escalation %/year 2.50
Recovery of copper % 90
Discount rate % 15



17. Similarly, operating and fixed costs escalate from year 1
through year 17. As specified in Table IV, the trend of
optimum cut-off grades from years 1 through 17 follows the
same model as presented in the previous policy. However, the
minimum optimum cut-off grade has increased from 0.21%
to 0.27% in year 17. This shows that the operation ensures
flow of comparatively high grade material even in the final
years to pay off the escalated operating and fixed costs. The
impact of price and cost escalation leads to 1.7% decrease 
in maximum NPV in year 1, i.e. from $735 770 000 to 
$723 350 000.

Table V shows a comprehensive breakdown of the
optimum policy, allowing both escalation of economic
parameters and stockpiling option. Owing to the similar
grade-tonnage distribution and initial values for the
economic parameters, an equivalent trend is followed for
selection of the optimum cut-off grades and the resultant
flow of material from mine to refinery. Table V indicates that
NPV (last column) is declining with exhaustion of reserves
(column 2 and 3) from year 1 to year 22. It describes the
process of discounting the annual cash flows to calculate Ωn
(last column corresponds to step 11 of the algorithm) for a
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Table III

Life of operation optimum production schedule without escalation and stockpiling option

Year Pushback Cut-off Grade (%) Average Grade (%) Qm (tons) Qc (tons) Qr (tons) Profit ($ million)

1 1 0.50 1.00 17 850 000 10 000 000 90 000 130.65
2 1 0.50 1.00 17 850 000 10 000 000 90 000 130.65
3 1 0.50 1.00 17 850 000 10 000 000 90 000 130.65
4 1 0.50 1.00 17 850 000 10 000 000 90 000 130.65
5 1 0.50 1.00 17 850 000 10 000 000 90 000 130.65
6 1 0.50 1.00 10 760 000 6 030 000 54 280 78.80
6 2 0.53 0.95 79 400 00 3 970 000 34 060 47.64
7 2 0.53 0.95 20 000 000 10 000 000 85 820 120.04
8 2 0.53 0.95 20 000 000 10 000 000 85 820 120.04
9 2 0.53 0.95 20 000 000 10 000 000 85 820 120.04
10 2 0.53 0.95 20 000 000 10 000 000 85 820 120.04
11 2 0.49 0.93 12 060 000 6 380 000 53 350 74.52
11 3 0.47 0.85 7 240 000 3 620 000 27 550 36.42
12 3 0.45 0.83 19 190 000 10 000 000 74 690 98.63
13 3 0.41 0.80 17 920 000 10 000 000 72 270 95.12
14 3 0.36 0.77 16 690 000 10 000 000 69 690 91.25
15 3 0.31 0.74 15 510 000 10 000 000 66 900 86.92
16 3 0.26 0.71 14 340 000 10 000 000 63 820 81.98
17 3 0.21 0.67 9 110 000 6 880 000 41 660 52.70

NPV = $735.77 million

Table IV

Life of operation optimum production schedule considering escalation without stockpiling option

Year Pushback Cut-off Grade (%) Average Grade (%) Qm (tons) Qc (tons) Qr (tons) Profit ($ million)

1 1 0.50 1.00 17 850 000 10 000 000 90 000 130.65
2 1 0.50 1.00 17 850 000 10 000 000 90 000 130.46
3 1 0.50 1.00 17 850 000 10 000 000 90 000 130.32
4 1 0.50 1.00 17 850 000 10 000 000 90 000 130.14
5 1 0.50 1.00 17 850 000 10 000 000 90 000 129.93
6 1 0.50 1.00 10 760 000 6 030 000 54 280 78.21
6 2 0.53 0.95 79 400 00 3 970 000 34 060 46.97
7 2 0.53 0.95 20 000 000 10 000 000 85 820 117.93
8 2 0.53 0.95 20 000 000 10 000 000 85 820 117.47
9 2 0.53 0.95 20 000 000 10 000 000 85 820 116.97
10 2 0.53 0.95 20 000 000 10 000 000 85 820 116.43
11 2 0.49 0.92 12 060 000 6 390 000 53 390 71.89
11 3 0.47 0.85 7 220 000 3 610 000 27 490 34.26
12 3 0.45 0.83 19 380,000 10 000 000 75 030 92.60
13 3 0.42 0.81 18 310 000 10 000 000 73 040 88.98
14 3 0.38 0.79 17 290 000 10 000 000 70 970 85.07
15 3 0.35 0.76 16 300 000 10 000 000 68 800 80.84
16 3 0.31 0.74 15 340 000 10 000 000 66 480 76.18
17 3 0.27 0.71 6 150 000 4 280 000 27 350 30.37

NPV = $723.35 Million



Net present value maximization model for optimum cut-off grade policy

particular period, which is then used to compute the optimum
cut-off grade. For example, processing capacity is limiting the
operation during year 15, hence γ = γc, and keeping the
escalated values of economic parameters, γ may be calculated
as follows:

Table V also demonstrates the accumulation of stockpile
material from years 1 to 17. As the lowest cut-off grade
remains 0.27% (from Table IV) and the optimum cut-off
grade during year 1 is 0.5036%, they exist in 4th and 9th
grade increments of the Pushback 1 (see Table II), respec-
tively. Therefore, the stockpile material consists of six grade
increments, presented as: 

[0.27, 0.30], [0.30, 0.35], [0.35, 0.40], [0.40, 0.45], [0.45,
0.50], [0.50, 0.5036]

The amount of material in the first stockpile grade
increment is determined using Equation [34]:

The tons of material from the 2nd to 5th stockpile grade
increments are determined using Equation [35]:
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Table V

Life of operation optimum production schedule considering escalation and stockpiling option

Year Pushback Available material (tons) γ (%) Available material (tons) @ γ Material handled (tons) Cash Flow NPV ($) 

Pushback Pit Ore Waste/ γ— (%) Qm Qs Qc Qr ($) @ 15%
stockpile

1 1 100 000, 000 300 000 000 0.50 56 031 133 43 968 867 0.99996 17 847 221 3 363 999 10 000 000 89 996 130 653 218 730 419 555

2 1 82 152 779 282 152 779 0.50 46 031 133 36 121 646 0.99996 17 847 221 3 363 999 10 000 000 89 996 130 462 455 709 329 270

3 1 64 305 559 264 305 559 0.50 36 031 133 28 274 425 0.99996 17 847 221 3 363 999 10 000 000 89 996 130 318 433 685 266 205

4 1 46 458 338 246 458 338 0.50 26 031 133 20 427 205 0.99996 17 847 221 3 363 999 10 000 000 89 996 130 140 463 657 737 703

5 1 28 611 117 228 611 117 0.50 16 031 133 12 579 984 0.99996 17 847 221 3 363 999 10 000 000 89 996 129 927 358 626 257 896

6 1 10 763 897 210 763 897 0.50 6 031 133 4 732 763 0.99996 10 763 897 2 028 873 6 031 133 54 278 78 224 913 590 269 222

6 2 100 000 000 200 000 000 0.53 50 000 000 50 000 000 0.95355 7 937 733 3 792 637 3 968 867 34 061 46 953 073 590 269 222

7 2 92 062 267 192 062 267 0.53 46 031 133 46 031 133 0.95355 20 000 000 6 207 764 10 000 000 85, 820 117 925 765 553 631 620

8 2 72 062 267 172 062 267 0.53 36 031 133 36 031 133 0.95355 20 000 000 8 888 000 10 000 000 85 820 117 470 837 518 750 598

9 2 52 062 267 152 062 267 0.53 26 031 133 26 031 133 0.95355 20 000 000 8 888 000 10 000 000 85 820 116 973 712 479 092 351

10 2 32 062 267 132 062 267 0.53 16 031 133 16 031 133 0.95355 20 000 000 8 888 000 10 000 000 85 820 116 432 981 433 982 492

11 2 12 062 267 112 062 267 0.53 6 218 075 5 844 192 0.94043 12 062 267 6 937 294 6 218 075 52 629 70 972 442 382 646 884

11 3 100 000 000 100 000 000 0.47 50 000 000 50 000 000 0.84553 7 563 850 3 936 477 3 781 925 28 780 35 857 079 382 646 884

12 3 92 436 150 92 436 150 0.47 46 218 075 46 218 075 0.84553 20 000 000 5 259 183 10 000 000 76 098 94 058 057 333 214 397

13 3 72 436 150 72 436 150 0.44 38 036 117 34 400 032 0.82686 19 044 044 6 971 626 10 000 000 74 417 90 932 173 289 138 499

14 3 53 392 106 53 392 106 0.41 29 589 377 23 802 728 0.80579 18 044 349 5 620 662 10 000 000 72 521 87 362 426 241 577 101

15 3 35 347 756 35 347 756 0.38 20 689 726 14 658 030 0.78382 17 084 690 4 267 141 10 000 000 70 544 83 517 002 190 451 240

16 3 18 263 066 18 263 066 0.34 11 298 163 6 964 903 0.76092 16 164 633 2 968 633 10 000 000 68 483 79 383 037 135 501 924

17 3 2 098 433 2 098 433 0.30 1 373 839 724 594 0.73679 2 098 433 1 242 287 1 373 839 9 110 10 275 206 76 444 176

17 Stockpile 54 806 161 54 806 161 0.30 47 296 823 7 509 339 0.39422 8 626 161 8 626 161 30 606 19 576 283 76 444 176

18 Stockpile 46 180 000 46 180 000 0.29 41 071 325 5 108 675 0.39137 10 000 000 10 000 000 35 223 20 990 103 58 059 313

19 Stockpile 36 180 000 36 180 000 0.29 32 946 890 3 233 110 0.38919 10 000 000 10 000 000 35 027 19 390 025 45 778 108

20 Stockpile 26 180 000 26 180 000 0.28 24 339 885 1 840 115 0.38734 10 000 000 10 000 000 34 861 17 803 735 33 254 798

21 Stockpile 16 180 000 16 180 000 0.28 15 293 718 886 282 0.38592 10 000 000 10 000 000 34 733 16 253 390 20 439 284

22 Stockpile 6 180 000 6 180 000 0.27 6 180 000 0.37900 6 180 000 6 180 000 21 080 8 339 554 7 251 786



Similarly, the tons of material in the 6th stockpile grade
increment are determined using Equation [36]:

Therefore, approximately 3.4 million tons of material is
scheduled to stockpiles in year 1. A total of 54.81 million
tons of raw material is accumulated in stockpiles from years
1 through 17, which otherwise is scheduled to waste dumps
in the previous policies. Stockpiling option promises an
increase of five years in the operation’s life along with a 1%
increase in NPV from $723 350 000 to $730 419 555.

Conclusions

The optimum cut-off grade policies indicate that the impact of
escalation on the objective function could be enormous in
cases where operating and fixed costs are escalating at higher
rates. This may change some of the economic open pit
operations to an uneconomic scenario. It is observed that the
operation presented in the case study becomes unprofitable
during later years at an escalation rate of 6 per cent per year
in the operating and fixed costs. Therefore, long term mining
plans should always include escalation of economic
parameters to establish the feasibility of the mining venture.

The results also reflect that the creation of stockpiles
scheduled approximately 55 million tons of additional ore for
processing, which facilitated in neutralizing the effect of
escalating economic parameters through enhancement of the
life of operations along with NPV. However, it is clear that
allowing the creation of long-term stockpiles is a strategic
decision, and exercising this option depends exclusively upon
the operating conditions of an open pit mining operation. The
proposed methodology is limited in its application to the
metallic ores; therefore, while making this important
decision, one must give a serious consideration to issues
such as material deterioration and compaction during long
exposure to the environment. Similarly, loss of values may
take place due to leaching, and oxidation may introduce
processing complexities and result in reduced recoveries.

The proposed cut-off grade optimization model considers
the escalation of economic parameters, particularly, the
operating and fixed costs, with a vision that mine planning
activity is focused on survival strategies under harsh

economic situations. As such, it is a contribution to the mine
planning community in terms of facilitating the evaluation of
different economic alternatives, ultimately ensuring the
optimum utilization of resources coupled with appropriate
policy formulation for making major mining investments. 

The model does not consider uncertainty in economic
parameters, especially, the uncertainty associated with the
metal price. Also, it is limited to the creation of long-term
stockpiles. Therefore, the development of cut-off grade
optimization models taking into account metal price
uncertainty and allowing the processing of stockpile material
during mine life are some of the areas for future research.
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