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Synopsis

Long-term production scheduling for open pit mines is a large-scale,
complex optimization problem involving large data-sets, multiple hard and
soft constraints, and uncertainty in the input parameters. Uncertainty in the
input parameters may be caused by different geological, economic, or
technical factors. The uncertainty caused by geological factors, which is
commonly termed geological or grade uncertainty, is considered to be most
important source of uncertainty among these factors. It is caused by the fact
that the block grade values are estimated using very sparse drill-hole
sample data and the actual grade values will only be known once a block is
drilled and blasted. Geostatistical conditional simulation techniques provide
a framework to quantify this geological/grade uncertainty by generating
multiple, equally probable simulated realizations of the orebody. Different
stochastic programming models have been proposed in recent years to
integrate this grade uncertainty into the optimization process, but solving
these models for actual-sized open pit mines is usually extremely difficult
and computationally expensive. In this paper, two different computationally
efficient population-based metaheuristic techniques based on particle swarm
optimization (PSO) and the bat algorithm are used to solve one particular
stochastic variant of the open pit mine scheduling problem, i.e. the two-
stage stochastic programming model with recourse for determining the long-
term production schedule of an open pit mine under the condition of grade
uncertainty.

Keywords
open pit, production scheduling, grade uncertainty, stochastic programming,
metaheuristic technique.

Introduction

Long-term production scheduling is an
important and integral part of the planning

an extraction sequence of the mineralized
material from the ground that produces the
maximum possible discounted profit, Z.e. NPV,
while satisfying a set of physical and
operational constraints. In the conventional
approaches, the planning process usually
starts with the construction of a geological
block model that divides the orebody and the
surrounding rock into three-dimensional
arrays of regular, usually identical-sized,
blocks. A set of attributes such as grade,
specific gravity etc. is then assigned to each of
these blocks, estimated using some form of
spatial interpolation technique ¢.g. kriging,
inverse distance method etc. and the drill-hole
sample data. The blocks are then divided into
two groups — waste and ore blocks. The blocks
for which the prospective profit exceeds the
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process for any open pit mine. It aims to define
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Long-term production scheduling of
open pit mines using particle swarm
and bat algorithms under grade

processing cost are categorized as ore, while
the rest are the waste blocks. An economic
value is then assigned to each of these
individual blocks by taking into account the
group to which they belong, their respective
estimated grade or metal content, the recovery,
and the economic parameters such as metal
price, mining cost, and processing costs. The
ultimate pit limits (UPLs) are then determined
using this economic block model, followed by
the more complex production scheduling
problem to define the most profitable annual
extraction sequence of the blocks lying inside
the ULP while satisfying different physical and
operational constraints.

A major drawback of this approach is its
assumption that all the input parameters are
known with certainty, while on the contrary a
certain degree of uncertainty is almost always
associated with these parameters, and ignoring
this may result into unrealistic and erroneous
scheduling decisions. The uncertainty in the
input parameters may be caused by different
economic and technical factors such as metal
prices, currency exchange rates, mining and
processing costs, and block grades. The grade-
related uncertainty is considered to be the
most important source of uncertainty for the
scheduling process for open pit mines and is
the main focus of study in this paper. The
grade uncertainty stems from the fact that the
grade values of the individual blocks are
estimated using very limited drill-hole sample
data, and usually a significant and variable
level of uncertainty is associated with each of
these estimated values. Geostatistical
conditional simulation techniques provide a
framework to generate multiple, equally
probable realizations of the orebody’s
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attributes to quantify both the local variability and the
potential uncertainty (Deutsch and Journel, 1997; Goovaerts,
1997). The availability of these techniques provides the
opportunity to integrate the potential uncertainty into the
scheduling process in order to generate a better production
schedule in terms of achievable maximum NPV while
minimizing the risk of deviations from production target.
Different stochastic programming models for integrating
grade uncertainty into the scheduling process have been
proposed in the literature to produce better production
schedules (Ramazan and Dimitrakopoulos, 2004; Golamnejad
et al., 2006; Menabde et al., 2007). However, depending on
the size of the individual blocks and of the ore deposit, the
UPL may contain thousands to millions of blocks that may
have to be scheduled over a time horizon typically ranging
from 5 to 30 years while considering different physical and
operational constraints and the potential uncertainty in the
input data. This entails scheduling a large combinatorial
optimization problem that may be extremely difficult and
computationally expensive to solve using conventional
techniques such as the branch and bound algorithm. In
recent years a new class of computationally less expensive
algorithms (metaheuristic techniques) for solving the mine
design and production scheduling problem has attracted the
attention of researchers, such as genetic algorithms (Denby
and Schofield, 1994, 1996), simulated annealing (Kumral
and Dowd, 2002, 2005), and ant colony optimization
(Sattarvand and Niemann-Delius, 2009, 2013). These
techniques do not guarantee the optimality of the final
solution that they produce, but they can produce better
quality solutions with relatively less computational cost.

In this paper an extension of the framework previously
presented by authors (Khan and Niemann-Delius, 2014) for
long-term production scheduling for open pit mines is
presented. The extension was made to integrate grade
uncertainty in the optimization process. Two different
metaheuristic techniques based on the particle swarm
algorithm and the bat algorithm are proposed to solve a
particular variant of the abovementioned production
scheduling problem, 7.e. two-stage stochastic programming
model with recourse (Birge and Louveaux, 2011).

The paper is organized as follows. A two-stage stochastic
linear programming model with recourse of the production
scheduling problem of the open pit mines is presented,
followed by a discussion of the standard PSO and bat
algorithm. A heuristic procedure for producing the initial
population of feasible random solutions is then presented,
with the proposed procedure for applying the PSO and bat
algorithm to the open pit production scheduling problem. A
case study is also presented.

Problem formulation

The two-stage stochastic (mixed integer) model with recourse
formulation of the open pit mine scheduling problem, similar

to the one proposed in Ramazan and Dimitrakopoulos (2004)
can be represented as follows:

.
Max Z [Z E{(NPV)!} x}
t=1 Li=1
g

1 . .
= DI YA + PRV P YR+ PP YR
5=1

[1]
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The objective function is composed of two parts. The first
part is for the maximization of the expected NPV of the
production schedule, and second part represents the
minimization of the expected recourse costs whenever the
stochastic constraints (Equations [6])-[9] are violated.

Subject to:
Reserve constraints: A block cannot be mined more than once
.
Yres1 Vi=12.N [2]
i=1
Slope constraints: Each block can only be mined if its
predecessors are already mined in or before period ¢.

t
Xjp — ijl =0 [3]

vi=1,2...N;t= 1,2 ....T; where j € (set of predecessors
blocks of block 7).
Mining capacity: The total material mined during each period
should be within the predefined upper and lower limits.

T
Zwi * X = Wi t=12...T [4]
i=1

.,
Zwltx” <W, t=12..T [5]
i=1

Stochastic constraints: The upper and lower processing

capacity constraints (Equations [6] and [7] and the upper

and lower metal production constraints Equations [8] and [9]

represents the scenario-dependent stochastic constraints.

These constraints are modelled as soft constraints where the

violation is penalized in the objective function.

T

Zu,-\.*x”+ Yo = 0; t=12 ...T, s= 1,2..5 [6]
i=1
T
Z”“”“_ vt <0, t=12..T, s=12.5 [7]
.

Mg *xe+ym =M, t=12..T, s= 12..5 [8]

=1

T
Z My * X — Y < M, t=12..T, s= 12..5[9]

Xir €(0,1)
Y& Y8 YE yE =0
where
T: Total number of periods
¢t Time period index, ¢t=1,2.... T
N: Total number of blocks
i: Block index, i=1,2 .N
S: Total number of simulations of the orebody
s: Simulation indexs=1,2...§

E{( NPV){} is the undiscounted expected economic value
of block 7 and is calculated as follows:

5
E{(NPV)'} = Z BV! /5 [10]
=1

where BV is the undiscounted economic value of block i
according to simulation s.
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E{( NPV);} is the expected discounted economic value of
block 7 if mined in period ¢ and is calculated as follows:

E{(NPV){} = E{(NPV)?}/(1 + dis1)* [11]

Xir are the first-stage scenario-independent binary
decision variables, which take the value unity if block 7 is
mined in period ¢, and zero otherwise.

p?, pf* are the discounted unit costs for shortage or
surplus ore produced in period ¢ respectively, and are
calculated as:

o= o+
Po o+ _ Po

P Trdsnr P T A+ dis2) [12]

pI¥, pI™* are the discounted unit costs for shortage or
surplus metal produced in period ¢ respectively and are
calculated as:

pr- = . prt = P [13]

T (1 +dis2)t T (1 +dis2)!

v&,y&" are the second-stage scenario-dependent
continuous variables representing the shortage or surplus
amount of ore produced in period ¢ if scenario s occurs,
respectively.

VI, ylF are the second-stage scenario-dependent
continuous variables representing the shortage or surplus
amount of metal produced in period ¢ if scenario s occurs,
respectively. The second-stage (recourse) decision variables
are dependent on the outcome of the orebody realizations
and of the first-stage decision variables .e. x;.

Wi Tonnage of block 7
Ois: Ore content of block 7 according to simulation s
Mmis: Metal content of block 7 under scenario s

Wrand Wy Lower and upper limits of the available mining
capacity in period ¢, respectively

Orand O Lower and upper limits of the available
processing capacity in period ¢, respectively

Mg and My Lower and upper limits of the required metal
production in period ¢, respectively.

Particle swarm and bat algorithms

Two different population-based metaheuristic optimization
techniques are briefly presented. Both techniques use a
population of solutions to explore the search space in order to
find better solutions.

Particle swarm algorithm

Particle swarm optimization (PSO) is a population-based
optimization technique first proposed by Kennedy and
Eberhart in 1995 (Eberhart and Kennedy, 1995; Kennedy
and Eberhart, 1995). The PSO algorithm mimics the
swarming behavior of individuals living together in groups,
e.g. fish schools, bird flocks, animal herds etc. The PSO
algorithm performs the search process by using a population
(swarm) of individuals (particles). Each individual (particle)
is a potential solution to the optimization problem. A random
starting position and random velocity are assigned to each
particle of the swarm. The velocity and position of each
particle is then updated during the iterative process using
Equations [14] and [15] respectively to find the optimum or
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near-optimum solution.

Vi = @V g+ 17y Py — Xieo1) + €272 (o1 — Figoa) [14]
Xie = Xppq + Vi [15]
where
XisXie1 represent the current and previous positions of
particle
VisVie1 represent the current and previous velocities of
particle 7
Dit is the personal best position experienced by
particle 7 until iteration ¢
Zit is the global best position experienced by the
population of particles until iteration ¢
o is the inertia weight used to control the

influence/contribution of the particle’s previous
velocity to the current velocity, with its value fixed
t0 0.7298

1,71 represent uniform random real numbers in the
range of (0, 1)

c1, G are called the acceleration coefficients and are used
to control the influence of cognitive and social
terms on the particle’s velocity, with the value
commonly fixed to 1.49445 (Clerc and Kennedy,
2002).

Algorithm 1: Pseudo code of the PSO algorithm

» Initialize a population (swarm) of particles with
random initial positions X'; o and random velocities ;o
in the search space.

» Initialize each particle’s personal best position 71 o to
X ;o its initial position

» Calculate the fitness value of each particle at its initial

position X;, and determine the initial global best

position 2,

While (t < maximum number of generations)

For all particles do

Update the particle’s velocity and position using

Equations [14] and [15] respectively.

Calculate the fitness value of each particle at its current

position X';¢

Iffitness (X';) is better than the fitness (7';.1) )then

Pir=Xit

end if

Iffitness (7'; ) is better than the fitness (1) )then

5_’) t= 17 it

end if

end, for

If the stopping criteria are met: end while

Yvy

A\

YVYYVYVYYVYYVYY

Bat algorithm

The bat algorithm (BA) is a stochastic population-based
optimization technique first proposed by Yang (2010). It is
based on the echolocation ability of bats. The micro-bats use
their echolocation capabilities to find prey and avoid
obstacles, even in complete darkness. The micro-bats emits
short-duration (typically in the range of 8 to 10 ms) loud
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sound pulses with constant frequency in the region of 25 kHz
to 150 kHz and listen for the echo that bounces back from
the surrounding objects to find the food or avoid the
obstacles. They usually emit 10 to 20 such sound pulses per
second and can increase the pulse emission rate to about 200
pulses per second as they get close to their prey. To
transform these unique properties of bats into an
optimization algorithm, Yang idealized the following rules
(Yang, 2010; Yilmaz, 2014) :

» All bats use their echolocation capabilities to find out
their distance from a certain object and can
differentiate between food/prey and background barrier
in some way.

> Bats fly randomly with velocity v; at position x; with a
frequency _fmin, and can vary the wavelength A and
loudness Ay of their emitted sound pulses to find the
food. Depending on their distance from the prey, they
can adjust the rate and wavelength or frequency of
their emitted pulse.

» The loudness varies from a large positive value Ag to a
minimum constant value Amn.

Each bat’s current position is a potential solution to the

optimization problem. The bats use the following rules to
update their positions:

ff = f”u'n + (f;rmx - f;nin)ﬁ [16]
vt = vf + (xf — x) fi [17]
xitt= x{ + of [18]

where f; represents the current frequency of particle 7, and

Smin, fmax are the minimum and maximum allowable
frequencies respectively. Initially a random frequency drawn
from the uniform distribution in the interval [fmin, fiax] is
assigned to each bat. pe [0,1] is a random number drawn
from the uniform distribution in the mentioned interval, x« is
the current global best position/solution, P and xf are the
current and previous positions of particle 7, v and vf are
the current and previous velocities of particle . For the local
search part (steps 6 to 9), after selecting one solution among
the current selected best solutions a new solution is
generated using random walk.

Xnew = Xold + ¢ F [19]
where ¢ € [-1,1] is a uniform random number and A7 is the
average loudness of all the bats in the current time step. The
pulse emission rate and the loudness of the bats are updated

as the iteration proceed using the following equations:

At = a A [20]

it = ¢ [1- eCrY) [21]

[ .
where Ai+1 and A are the current and previous loudness of
bat 7, « and y are constants, and 7/ and 7° are the current
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and initial pulse rates. The values of A/and r{ can typically
be [1,2] and [0,1] respectively. Yilmaz and Cengiz ( 2014)
proposed a modified bat algorithm (MBA) to improve the
poor exploration capabilities of the BA. They proposed to
assign pulse emission rate 7 and loudness A to each
dimension of the solution separately instead of assigning a
single value to all the dimensions of a solution, and proposed
the following procedure for updating the position along a
certain dimension  of a solution:

rand; > 1

[22]

t . At
w1 |+ E A;
Xjj = o

ij Otherwise

where A;* represents average loudness of dimension  of all
solutions at time ¢, and « indicates a solution selected among
the best solutions. The loudness and pulse rate are updated
ds:

t - -
A+ = a A rand; >
iy = Al
ij

s - {P.[_a |] - Q\'—Y’)l

[23]

Otherwise

rand; > r;
- ] Otherwise [24]

In the MBA a candidate solution is included in the
population if 7 and < A4;, where 4;is the average loudness of a

solution 7.

Algorithm 2: Pseudo code of the bat algorithm

» Initialize bat population with random initial positions
Xio and random velocities ¥; o in the search space

» [Initialize each bat’s frequency /7, pulse rate 7;, and the
loudness A;

» Calculate the fitness value of each particle at its initial

position X'; o and determine the initial global best

position X

While (¢ < maximum number of generations)

Generate a new solution by updating the frequency,

velocity, and position using Equations [16], [17], and

[18] respectively

If (rand > r;

Select a solution among the best solutions

Generate a local solution around the selected best

solution

end if

If (rand < A; and f(x; ) is better than f(x.) )

Accept new solution

Increase r;, reduce A;

end if

Rank the bats and find the current best x«

If the stopping criteria are met: end while

\A\/

vyvyy

YYYVYVYVYY

Initial solutions

A ‘greedy’ heuristic procedure has been used to generate the
initial population of feasible solutions. The process starts by
generating a list of the free blocks that are available to be
mined in the current period as their predecessors are either
already scheduled to be mined in the current or prior period
or due to their position in block model they do not have one.
A block is selected at random from the list and assigned to
the current period and the list is updated again. The process
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continues for the current period until the mining and
processing capacities are satisfied in the average sense before
moving on to the next period. Mining and processing capacity
constraints are handled as hard and soft constraints
respectively during this process, but more preference was
given to satisfy the processing capacity constraint. While
selecting an ore block more preference was given to the
blocks with highest probability of being ore by considering
the set of simulated values for that block and the predefined
cut-off grade. The process stops when either the free blocks
list is empty or the number of periods is finished for the
current solution. To further diversify the generated solutions,
the annual mining capacity per period is chosen at random
from the range between upper and average mining capacities
allowed in a period.

Adaptation of the PSO and bat algorithm to the open
pit mine production scheduling problem

To apply the continuous variant of PSO and bat algorithms to
the long-term production scheduling problem, the problem
has been turned into optimum depth determination problem.
After generating a population of initial feasible random
solutions using the heuristic procedure discussed earlier, the
mining depth along each column for each period is
determined by using a so-called encoding scheme. These
depths are then updated using the PSO or bat procedure
during the iterative process. After each iteration, each
solution is back-transformed to the discrete space, but due to
the one-dimensional nature of the PSO and bat algorithms
the resulting solutions may be infeasible in terms of the
required slope angles. A normalization procedure is then
used to turn the infeasible solution into a feasible one in
terms of the required slope angles. A constant penalty
method has been used to deal with the violation of the
capacity constraints, where a constant penalty is added to the
objective function for the per ton violation of the mining
capacity constraints, to decrease the quality of the infeasible
solutions by using Equation [25].

Max i li E{(NPV)!} x!
t=1 g:_l

5
1
= 2 D YA + P2t YR DI YR+ P YY)
5=1

[25]
_ P['“_ RM= 4+ pM+ gh+

where ", p" are the discounted unit costs for shortage or
surplus rock (ore plus waste) produced in period ¢
respectively, and are calculated as:

M- M+
P‘f!

To
pi'” = Trasay ' P = +j dis2)! [26]
RMand RM* represent the shortage or excess amount of

rock (ore plus waste) produced in period ¢ The value of the

penalty is problem-dependent and is obtained for each
problem by trial and error. A detailed description of the

procedure can be found in Khan and Niemann-Delius (2014).

The pseudo codes of applying the PSO and bat algorithms to

the open pit mine scheduling problem using this proposed

procedure are given in algorithms 3 and 4.

The Joumnal of the Southem African Institute of Mining and Metallurgy

Algorithm 3: Pseudo code of the PSO algorithm for the
production scheduling problem for open pit mines

» Input: block model, economic and technical parameters
» Initialize a population (swarm) of particles with
random initial positions X'; o and random velocities ;o
in the search space (i=1, 2 ........ N)
» Initialize each particle’s personal best position 7' o to
its initial position X'; o
» Calculate the fitness value of each particle at its initial
position X'; o and determine the initial global best
position g,
While (¢ < maximum number of generations)
Encode each particle’s current position ( X';;), its
personel best position (7';¢), and the populations’
global best position (g7)
Jor all particles do
Update the particle’s velocity and position using the
equation of the PSO algorithm
Back-transform
Normalize the solution
Calculate the fitness value of the particle at its current
position X'
Iffitness (¥';() is better than the fitness (7';~1) then
pLt=Xis
end if
Iffitness (7'; () is better than the fitness (g;) then
E t= ﬁ) it
end if
end,_for
If the stopping criterion is met, end while.

Yy yyvy

Yyvy

YYVYYYVYVYY

Algorithm 4: Pseudo code of the bat algorithm for the
production scheduling problem for open pit mines

» Input: block model, economic and technical parameters

» Initialize bat population with random initial positions
Xio and random velocities ¥; ¢ in the search space
(=1,2..N).

» Initialize each bat’s frequency f;, pulse rate 7;, and the
loudness A;

» Calculate the fitness value of each particle at its initial

position X'; o and determine the initial global best

position X

While (¢ < maximum number of generations)

Encode each particle’s current position (X;,) and the

population’s global best position (X.)

» Generate a new solution by updating the frequency,

velocity and position using Equations [16], [17], and

[18] respectively

If (rand > ;)

Select a solution among the best solutions

Generate a local solution around the selected best

solution

end if

Back-transform

Normalize

Calculate the fitness value of each particle at its current

position X';¢

If (rand< Ai and f(x7) is better than f(x.))

Accept new solution

Increase r;, reduce A;

end if

Ranks the bats and find the current best X«

If the stopping criterion is met: end while.

Yy

Yyvy

YYVvVYy

YYYVYVYY
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Case study

To check the capabilities and the efficiency of the proposed
procedure for generating a long-term production schedule
under the condition of grade uncertainty, a set of 15
simulated realizations of a copper deposit was used.
Examples of these realizations are shown in Figure 1. These
realizations were generated using sequential Gaussian
simulation technique (SGS) (Deutsch and Journel, 1997).

A predefined fixed cut-off grade strategy has been used
to determine the destination of a particular block. While using
this fixed cut-off grade strategy a block may be categorized
as an ore block according to some simulations, and a waste
block according to others (Figure 2). This fact has been taken
into account while determining the expected economic value
of the blocks.

The planning and scheduling process for open pit mines
traditionally starts with the determination of the ultimate pit
limits (UPLs), which define the extent to which it is
economically feasible to mine. The UPLs were determined by
solving the following mathematical formulation:

N
Maximize Z Vix; [27]

i=0

Subject to:

x 2xi=L2 i Ny jeB [28]
x; €[0,1]
where V; represents the expected economic value of block 7, &
represents the total number of blocks in the block model, x;
represents a binary variable corresponding to block 7, and 7;
represents the predecessor group of block 7. The required
slope angles were assumed to be 45° in all directions. In the
next step to define the optimum extraction sequence of the
blocks lying inside the predetermined UPLSs, the technical and
economic parameters mentioned in Table I were used. The
length of each scheduling period was assumed to be one year.
The upper and lower limits for mining, processing, and metal
capacity were set to be within +20% and +10% of the average
available quantity of rock, ore, and metal available within the
predefined UPL for each period of the scheduling horizon
respectively.

All the numerical experiments were completed on an
AMD Phenom II X4 945 (3.00 GHz and 4 GB RAM) running
under Windows 7. The two-stage stochastic programming
formulation of the open pit production scheduling problem
(as mentioned in the section ‘Problem formulation’) with

recourse was solved using the commercial solver CPLEX,

Bow->os
= [Jssw

L. . Joos

Figure 1—Cross-sectional view of four different simuated realizations of the copper deposit in the north-south direction

30000000

Ore tonnage (Mt)
g
g

25000000 i I S

:
:

10000000 1 1 1 T T T

5000000 1 T

7 8 9 10 11 12 13 14 15

Simulation no.

Figure 2—The ore content of the deposit according to different realizations of the orebody
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Table |

Technical and economic parameters used in the
case study

Number of blocks 7107
Number of scenarios 15
Block dimensions (m) 25x25%x12.5
Block tonnage (Mt) 6500
Metal price ($/0z) 0.12
Mining cost ($/Mt) 2
Processing cost ($/Mt) 10
Refining or selling cost ($/0z) 6.5E-3
Recovery 85%
Discount rate (dis1,dis2) 8%

No of periods (years) 5
Table Il

General information about the solution found by
CpLex

Objective value ($) 1.75818 E 008
CPU time (hours) 61.63
Optimality gap (%) 6

considering the blocks within the predefined UPL and the
parameters mentioned in Table L. This solution will be used
as a benchmark to assess the performance of the PSO and bat
algorithms in terms of computational time and solution
quality.

After conducting a series of experiments, a population of
50 solutions was found out to be working well for the
problem under consideration. A set 50 solutions was
generated using the greedy heuristic described in the section
‘Initial solutions’. These same solutions were used during all
the subsequent experiments. Due to the stochastic nature of
the metaheuristic algorithms the problem was solved 50
times using different variants of the PSO and bat algorithms.
The maximum number of iterations was used as the
termination criterion and was fixed to 2000 after observing
the convergence behaviour of both the algorithms. The
average relative % gap (which will be used a measure of
quality of the solutions produced by the metaheuristic
techniques under study) between best solutions generated by
the different variants of the metaheuristic algorithms, Z.e.
Zapprox and the optimal solution found by CPLEX, i.e. Zcprex
are calculated using the following equation and are reported
in Table II.

% Gap = Z—CP“’?(  Lawprox 100 [29]
o

The values of the penalties used to report the violation of
the capacity constraints, Z.e. mining, processing, and metal
capacity constraints in the objective function, were found to
have a great effect on the performance of both the
algorithms. When higher values were used, both the
algorithms showed very few signs of improvement during the
iterative process in comparison to the situations when
smaller values were used. Therefore the following two sets of
penalties have been used during this study.
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» Algorithmic penalties: During the optimization
process these penalties have been used for enabling the
algorithms to efficiently explore the solution space and
for generating the desired final solution with desired
risk profile. These penalties are usually smaller in
value than the corresponding actual penalties and are
determined by trial and error.

> Actual penalties: These are the actual penalties that
have been used to calculate the objective value of the
final solution generated by the PSO or bat algorithm at
the end of the iterative process.

For the problem under consideration, both variants of the
PSO algorithm performed better than the variants of the bat
algorithm in terms of the achieved average % gap as
mentioned in Table III. The multi-start PSO algorithm showed
the best performance in comparison to all its population-
based competitors in the current study in terms of the
achieved average % gap, showing the effect of diversification
on the overall performance of the PSO algorithm. During the
multi-start process the particle positions and velocities are re-
initialized to their initial values after a fixed number of
iteration as a diversification scheme. Both variants of the bat
algorithm showed poor performance when the standard
velocity equation, (Equation [17]) with maximum frequency
value equal to unity was used to update the virtual bats’
positions.

Therefore the following modified equation was used to
update the velocity of a bat:

vitl = wvif + (xf — x.) f; [30]

After conducting a series of experiments, the algorithm
was found to be working well when the value of the
maximum frequency was fixed to 0.6 and o was chosen from
the interval 0.4-0.6. The bat and MBA algorithms performed
well when o was fixed to 0.4, with a relatively small standard
deviation showing the robustness of the technique in
comparison to both variants of the PSO algorithm. In general
both the metaheuristic techniques can produce better quality
results with less computational cost in comparison to the
exact optimization algorithm, thereby providing the
opportunity of generating solutions with different risk
profiles according to the needs of a certain open pit mining
operation, which is quite difficult and expensive using an
exact algorithm.

Conclusion

An extension of the framework previously formulated by the
authors (Khan and Niemann-Delius, 2014) has been
presented. This extended framework can account for grade
uncertainty in the production scheduling process for open pit
mines. To check the efficiency of the proposed extended
framework for finding an optimum or near-optimum solution,
two different population-based metaheuristic techniques, the
PSO and bat algorithm, have been used. Through numerical
experiments it was learnt that both variants of the PSO
algorithm performed better than the variants of the bat
algorithm in terms average % gap achieved, but showed poor
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Table Il
Numerical results of different variants of the PSO and bat algorithm
CPU time (minutes)
Mean Standard deviation
Global PSO 0.533 0.160 8.14
Multi-start PSO 0.528 0.135 8.42
Bat algorithm
©0=0.6 0.817 0.126 8.35
w=0.4 0.790 0.094 8.37
Modified bat algorithm

=06 0.832 0.107 8.57
w=0.4 0.808 0.097 8.43

performance in terms of average % standard deviation for the
problem under study. The numerical experiments further
revealed that the proposed procedure can generate
sufficiently good solutions of the problem at hand in a
shorter period of time. This property of the proposed
framework provides the opportunity to handle grade-related
uncertainties in more efficient way, which is otherwise quite
difficult with currently available commercial software on the
current hardware.
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