
The theory and practice of particulate sampling
grew out of the need for accurate assays of the
grades of ores, concentrates, and coals that
were traded in the mining areas of the USA
and UK in the period between 1850 and 1930.
The origins of sampling theory and practice are
deeply embedded in the financial implications
associated with sampling and follow-up
trading of ores and concentrates. In fact, so
prolific were the authors and writers about the
issues involving the sampling of ores and
concentrates that Sharwood and von Bernewitz
(1922) from the US Bureau of Mines compiled

a list of 906 pieces of literature on sampling up
to July 1921. Some of the more famous
sampling and blending authors of the time
were Reed (1882), Brunton (1895), Hofman
(1899), Warwick (1903), Rickard (1907),
Richards (1908), Argall (1912), Woodbridge
(1916), Pulsifer (1920), and Taggart (1927).
Records indicate that the principal exponent of
practical sampling was Henry Vezin, who apart
from newspaper articles, wrote very little
himself, but as early as 1850 had designed
and published diagrams of his rotary sampler
(Rawle, 2017). Vezin’s outstanding design
implies that he understood, even at this early
stage, the principles of probabilistic sampling..
Although he never published it, Vezin’s
outstanding splitter design, examples of which
are shown in Figure 1a and 1b, implies he
understood, even at this early stage, the
principles of probabilistic sampling, namely
‘each and every fragment must have the same
statistical opportunity as every other fragment
of being in the sample’. 

Table 2 in Volume 2 of Richards’ ‘Ore
Dressing’ (Richards, 1907, p. 850), extract
shown below, provides a minimum mass
calculation that he attributes to Vezin (1866),
but which may have originated with Hofman
(1899), a professor from Massachusetts
Institute of Technology (MIT) (Rawle, 2017).

According to Rawle (2017), the superscript
14 next to Vezin’s name refers to Hofman
(1899), who in fact did not mention Vezin’s
name in the text.

The table quoted by Richards (1908) and
attributed to Vezin provides data for sample
mass and fragment size, which plots as a
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power curve with the equation as shown in Figure 2a, or
alternatively, as a straight line on a log-log graph paper with
an equation as shown in Figure 2b.

These data indicates that at an early stage (ca. 1866)
Vezin had shown that the sample mass and the cube of the
fragment size were related. Richards (1908) suggested the
masses generated by Vezin’s formula were too large, and
arbitrarily changed the factor for fragment size in the
equation in Figure 1a to dN

2, although he provided no
scientific grounds for doing so, a change that some have
suggested set the science of sampling back 50 years. It was
not until the 1950s that Pierre Gy set the record straight,
restoring the factor to dN

3. Unfortunately, Vezin never
published much of his research and it was left to Warwick
(1903) to pull his work together in an excellent volume,
entitled ‘Notes on Sampling’, after Vezin’s death. 

The following extract from Chapter 5, entitled ‘Receiving,
sampling, and purchasing’ on page 45 of Hofman’s 1899
publication, refers specifically to the trade in gold- and silver-
bearing ores (Rawle, 2017).

This extract from Hofman’s document clearly illustrates
that early authors understood that accurate assay values
depend on a relationship between the size of ore fragments
and the mass of the sample. Vezin’s donation of his notes,
reports, and calculations recorded in the Mining Reporter,
Denver, Colorado of October 1901, was written up in eighteen
parts and reported in the local newspaper by Arthur Warwick
(Rawle, 2017). A further extract from ‘Notes on Sampling’,
Warwick’s (1903) compilation of Vezin’s work, illustrates the
scale of mining- and mineral-related financial transactions
taking place in Colorado at the end of the 19th century.
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This also shows that the extensive research into sampling
issues at the turn of the 19th century was motivated by the
need to understand the scale of the losses that one or other
partner would potentially face because of poor sampling
practice. What these authors did not specify is the source of
the errors. This paper aims to examine the effects of sampling
errors and sampling bias on assays of traded commodities,
and consequently the potentially incorrect payments to
producers.

From a detailed historical investigation of the origins of
sampling, Rawle (2017) concluded that sampling theory
arose from two papers published by Reed (1882, 1885) in the
Columbia School of Mines Quarterly. Reed’s 1882 publication,
‘Ore sampling’ is a key document in which he explained that
the minimum sample mass is proportional to the cube of the
nominal fragment top-size. He apparently quotes David
Brunton on this matter, but without reference to his
publications. Although there is no record of published work
earlier than 1895, Brunton (1895) later wrote about the
theory and practical aspects of sampling. Brunton made the
astute observation that ’… to be equally reliable two samples
of a same material should be made of the same number of
fragments, irrespective of the top particle size.’ 

Perhaps the first person to expound an equation for the
variances of what is now known as the Fundamental
Sampling Error was Robert Richards (1908), who published
the ‘Ore Dressing’ volumes, which are regarded as the de
facto mining publications. Vezin, Brunton, and Richards all
knew one another and met on a number of occasions (Rawle,
2017). Vezin outlined a calculation very early on (maybe
even in the 1860s) based on a simple statistical analysis of a
minimum of 10 000 particles needed in the 99th percentile of
the size distribution. In the 1880s, Reed published a similar
analysis that was used by Hofman (1901), and subsequently
Richards (1908).

The historical background tells firstly of the huge body of
research that had taken place up to the early 1950s, when
Pierre Gy dedicated himself to a study of the sampling of
particulate materials, and secondly, that this research was
driven by financial concerns. Accordingly, Gy (2004) honed
the issues around sampling into what is called the Theory of
Sampling (TOS) from the 1950s onward, and particularly in
the 1970s when his work started to appear in English.

Gy (1953, 1967, 1976, 1979) was among the first
researchers to name the different types of sampling errors
and to identify the locations at which these errors were
generated in the mining value chain. Gy’s earliest taxonomy
of sampling errors was simple, the source and nature of the
sampling errors essential to an understanding of the financial
implications of trusting a sample value being shown in 
Table I. The sources of sampling errors are categorized into
four groups that deal firstly with the nature of the materials
being sampled; secondly, the sampling equipment and
materials handling; thirdly, the processes and procedures in
the plant; and fourthly, with the analytical processes. This
shows that sampling errors of the same or different types
may occur at a number of different localities along the mining
value chain. While some sampling errors arise predominantly
in the early stages of the mining value chain, the same errors
may re-occur later on at a different locality if the source and
nature of such errors is not identified. For example, the
Delimitation Error and Extraction Errors may occur during
exploration, mine development, during grade control, and in
the analytical laboratory (Pitard, 2006). Very often the
sampling errors at different locations along the mining value
chain vary in scale, rather than by type. Consequently,
Delimitation and Extraction Errors at the exploration or mine
development stages involve hundreds of tons of material, but
these errors can also occur in the analytical laboratory where
only a few tens of grams of material are being handled. Only
the sampling errors associated with the materials themselves
and those generated by materials handling are considered in
this paper. 

In a statistical sense, a sample is usually a small
representative proportion of the lot, the total population. The
information content of a single sample is small in that it
provides a best, unbiased estimate of the mean value of the
lot. In fact, the sample extraction process may have resulted
in a biased sample, but this would never be known. Only
when two or more, preferably many more, samples are
assayed may it be possible to obtain a better estimate of the
mean and begin to calculate the variability associated with
these samples. Samples should bear the principal
characteristic that they are representative of the lot from
which they are drawn, and if representative, they are by
definition unbiased. Furthermore, only correct samples,
obeying the principle that every fragment in the lot should
have an equal opportunity of being included in the sample, 
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Table I

Material characterization In situ Nugget Effect (INE) True error
Fundamental Sampling Error (FSE) True error

Grouping and Segregation Error (GSE) Bias

Sampling equipment and Delineation Error (DE) Bias
materials handling Extraction Error (EE) Bias

Preparation Error (PE) Bias
Weighing Error (WE) Bias

Plant process and procedures Continuous Selection Error (CSE) Error and bias

Analytical processes Analytical Error (AE) Error and bias
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can be unbiased. Only samples that are collected according to
an optimized sampling protocol will be representative. It is
important not lose sight of the fact that samples are a first
step in an investigation into the mean value for one or other
characteristic of the population, the lot. Consideration of the
spatial and directional reach of a sample value is important to
sampling, but it is fundamental to the discipline of
geostatistics. Sampling a stockpile by taking replicate samples
over the surface of the pile will provide a more representative
estimate if the footprint of the area within which samples are
selected is bigger. Sampling a bigger area means the reach of
the samples, the spatial influence of each sample, is
extended. Samples extracted from flowing material streams,
such as crushed ore on a conveyor belt, or leachate flowing in
a launder of a hydrometallurgical process, are linearly
separated in time and space. The space between samples and
the size of the sample collected are crucial to obtaining an
accurate estimate of the mean of the parent lot, the behaviour
of the input material, and the ability of the plant to produce a
product to customer specifications. 

Sampling errors arise because of both the constitutional and
distributional heterogeneity of materials, broadly referred to
as the materialization errors (Gy, 1967, 1979; Pitard, 1993).
Three types of sampling errors arising from this hetero-
geneity have been defined, namely the In situ Nugget Effect
(INE), the Fundamental Sampling Error (FSE), and the
Grouping and Segregation Error (GSE). 

Pitard (2006) is the main proponent of the In situ Nugget
Effect, the error arising from the presence or absence of gold
nuggets in a piece of borehole core from a mineralized zone.
Depending on the nature of the mineralization, nuggets may
or may not be present. Solid gold nuggets may be up to
several millimetres in diameter (in some cases much bigger).
In some cases fine gold grains, about 50–70 m in diameter,
aggregate together to form nuggets up to 1000 m in
diameter. Such nuggets produce extreme variability in gold
assay values from one drill-hole to the next. The INE can be
reduced by increasing the diameter of the drill core. 

The formula devised by Gy as early as 1952–1953 is given 
in Equation [1]. It relates the FSE to an ore-type-specific
coefficient K, the diameter of the fragment size raised to 
the third power (dN

3), and inversely to the mass of the
sample (MS).

[1]

While it is clear that the FSE is inversely proportional to
the mass (MS) of the sample, and hence can be controlled by
the mass of the sample or the number of samples, as
indicated in Equation [2], it also depends on how the mass is
constituted. 

[2]

MS may represent a single, large sample, or it could
represent a large number of small increments, n, composited
to make up the sample. The FSE is an error variance in units
of the analyte of interest. 

The FSE arises from within-fragment and between-
fragment variations in grain size, particle size, mineralogical
composition or mineral constituents, density of the
fragments, amount of gangue, and metal content from one
fragment to the next. No matter how many samples are
assayed, the results are always different from one another
because of constitutional heterogeneity and the fact that only
a portion of, and not the whole of, the population is sampled. 

The FSE can be reduced to a minimum, but can never be
eliminated. Oddly enough, it can also be calculated before the
sample is taken, provided heterogeneity tests and essential
material characterization have been carried out. Percentage
precision, without any reference to units, is the coefficient of
variation (standard deviation divided by the mean, multiplied
by 100) used to compare one set of analyses with another.
The parameters in the formula devised by Gy (1953, 1967)
for the FSE indicate that larger sample masses, and in
particular a reduction of fragment size, will improve the
precision of the assays. The only way to ensure that the FSE
is minimized is to ensure that the primary sample is collected
according to the strict principles of the Theory of Sampling.

The Grouping and Segregation Error, another material-related
source of error, arises from the tendency for grains or
fragments of ore containing very dense target analytes to
group under gravity and consequently segregate from the
bulk of the ore. The behaviour of very dense fragments under
gravity is much like that of a shoal of fish, which although
not physically connected, segregates and moves under
natural instinct as a group in water. A net thrown into a
shoal will produce a catch – a strongly biased, non-
representative distribution of fish in the ocean, as will a net
that catches no fish. Sampling of strongly segregated
particulate materials is typically clustered sampling in which
groups of fragments (clusters) are extracted at random. The
size of the clusters is critically important when sampling for
genetically modified organisms (GMOs) in shipments of
grain. If the clusters differ significantly in composition with
respect to the target analyte due to the Grouping and
Segregation Error, this can result in non-representative
sampling. This so-called Grouping and Segregation Error
(GSE) can be reduced during sampling processes, firstly by
homogenizing the lot, and secondly by collecting and
compositing numerous small increments rather than taking a
single large sample. The principle of compositing numerous
increments was well understood as early as 1882 by Reed
(1882), who designed a shovel that could extract small
increments from a lot.

While there are equations that relate the Grouping and
Segregation Error to segregation and grouping coefficients, it
is not possible to calculate the error, because the size of the
error is transient and changes from one moment to another. It
is, however, possible to identify, measure, and mitigate its
overall contribution to particulate segregation and the
distributional heterogeneity. 
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Whereas sampling errors, namely the INE, FSE, and GSE, are
due to variability in material composition or constitutional
heterogeneity, sampling bias arises from materials handling,
sampling equipment, and specifically interactions at the
interface between the steel1 of the sampling tools and the
broken ores. Biased sampling occurs when certain particles
within the lot, due to their size, shape, density, or moisture
content, are consistently favoured over others during the
sampling process; the contribution to sampling bias due to
weighing and moisture determinations is not considered in
this discussion. This means that not every fragment has the
same statistical chance of being in the sample. Sampling bias
can be engineered out of sampling equipment provided that
two principles, namely the Principle of Symmetry and the
Principle of the Centre of Gravity (CoG), are upheld (Pitard,
1993). The Principle of Symmetry requires that the
interaction of the steel of sampling equipment with fragments
is exactly the same as it enters and exits the flowing stream
of material. Sampling tools with thick walls (Figure 3a) and
angles that are not steep enough (Figure 3b) are likely to
introduce a bias. Good sampling cutter designs have sharp
edges and angles with  70°  as shown in the good design
of Figure 3b. 

The Principle of the Centre of Gravity requires that
fragments whose centre of gravity lies within the sampling
tool must be included in the sample, whereas those whose
centre of gravity lies outside the tool must not be part of the
sample, as illustrated in Figure 4 (Pitard, 1992).

Sampling of bulk commodities such as iron ore,
manganese, chromite, bauxite, limestone, and coal for
commercial purposes or monitoring of processes that use
these products, is standard practice in industry. A video
documentary entitled ‘Sampling of Bulk Commodities, Design
and Operation of Sample Cutters’ compiled and produced by
Robinson and Holmes (1990) at the Commonwealth Scientific
and Industrial Research Organisation (CSIRO), Australia
describes nine necessary conditions for sample cutters to
provide unbiased samples. The principle for cutters to deliver
unbiased samples is that ’all particles should have an equal
chance of being sampled’ (0:01:10). The documentary
examines the performance of sample cutters for bulk
commodities and provides advice regarding cutter designs
based on the work of Gy (1979). 

Robinson and Holmes (1990) examined many types of
sampling equipment used to sample flowing streams of

material on a conveyor belt. Cross-stream cutters located at
the end of a conveyor belt, where the cutter intersects the
falling stream of material, are generally considered the most
efficient and unbiased equipment. Cross-belt cutters intersect
the material on the conveyor at some point along the length
of the belt. Continuous research into cutter shapes and the
angle at which the cutter intersects the moving stream of
material has led to considerable improvement in the
performance of cross-belt cutters. However, they suffer from
the limitation that the material closest to the conveyor belt is
generally under-sampled, and generally they are not highly
recommended (Robinson and Holmes, 1990). 

Robinson and Holmes (1990) described nine necessary
conditions for cutters to be unbiased, some of which relate to
cutter design and others to cutter performance. The basic
principle of correct sampling requires that when the cutter
moves through the stream of particles, it must intersect the
entire stream rather than just a portion of the stream. The
cutter in Figure 5a is too far forward, and does not appear to
cut the entire stream, meaning the back of the stream is
inadequately sampled. Adequately powered motors or
hydraulic mechanisms able to drive the cutter through the
moving stream at a constant speed are essential. Biased
samples arise from hand-operated cutters as like shown in
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Figure 5b, because they cannot provide an even cut of the
stream, nor does the cutter blade intersect the entire stream
of particles.

Changes in the speed of the cutter as it moves through
the stream during the sampling could introduce a bias. The
highly abrasive environment in which the equipment
operates means that cutter blades are subject to wear, so
regular maintenance is required to ensure that the edges of
the blades are sharp and straight. Wear and abrasion along
the lips of the cutter could mean the size of the opening
varies along the length of the cutter, being wider in the
middle than it is at the ends. As a result, material along the
centre of the stream is likely to be over-represented. An
important aspect of cutter design is that the cutter must have
sufficient capacity to hold all the material it extracts during a
single traverse across the stream. The capacity of the cross-
stream sampler shown in Figure 6a is too small, with the
result that sample material falls out of the sampler onto the
incoming stream once it has passed through the stream.

Loss of material from an overflowing cutter means the
extracted sample cannot be correct or representative; it is
biased. Losses of material from the sample, or extraneous
additions of built-up material on the cutter blades, as shown
in Figure 6b, mean samples will be either under-weight or
contaminated. Cutter openings must be sufficiently wide that
all particles have the opportunity of entering the sample
cutter, and not as shown in Figures 5a and 6b. Gy (1979)
suggested that cutter openings be at least three times larger
than the nominal top size or the largest particle in the flowing
stream. Where this is not the case, the largest particles
interacting with one another at the cutter aperture could
prevent other particles from entering the cutter. If the cutter
aperture is too narrow, there is a possibility that larger
particles could hit one cutter blade and bounce over the other

blade, so that larger particles are under-represented. For
cross-stream cutters it is essential that the cutter blades are
at right angles to the trajectory of the falling stream. If the
angle of the cutter blades to that of the incoming stream is
small, large particles that should be included could hit the
blades and easily bounce out of the cutter, resulting in a bias
in which larger particles are under-represented. According to
Van Niekerk (2017, personal communication) the +25 mm
fraction of the lot tends to be missed during the sampling
procedure. For Vezin samplers, such as those shown in
Figure 1, the action is the same as a cross-stream sampler,
but the cutter must move at constant speed, i.e. constant
angular velocity, and the cutter blades must be radial to the
centre of rotation, so that the falling stream is subjected to a
constant cutting time irrespective of its position along the
cutter. Swing-arm cutters and ramp cutters have openings
that are at right angles to the stream and must move at
constant velocity through the stream of particles. Significant
research by the CSIRO into the size of cutter apertures, the
speed of cutters, and the angle at which they intersect the
stream, has provided the optimal conditions for cutter
operation (Robinson and Holmes, 1990).

The principles for cutter operation in dry materials are
essentially the same as for slurries and very moist streams of
materials, except that there is no bouncing of the materials.
For swing-arm and ramp cutters the bounces of particles are
larger when the cutter enters the stream than when it exits.
Particles that bounce sideways off cutter blades should not be
able to bounce so far that they are not included in the sample
(Robinson and Holmes 1990).

The study concluded that the simple aspects of cutter
operation, such as routine maintenance, cutting the full
stream, sufficiently wide cutter apertures and adequately
powered motors are the most important (Robinson and
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Holmes, 1990). It is possible that uninformed operators could
overlook deviations from standard sampling conditions and
practices that may cause significant bias. Consequently, it is
recommended here that an on-site competent person, who is
fully aware of the principles of the Theory of Sampling,
observes, audits, and verifies correct cutter operation at
individual sampling locations on a regular, even weekly,
basis to ensuring that no meaningful bias is introduced into
samples.

Sampling uncertainty has to do with a model of statistical
behaviour of sampling assays. Uncertainty can be established
only when there is more than one measurement for which a
variance can be calculated. Uncertainty defines an estimate of
the statistical range within which a sample value could lie
with a given level of confidence. The difference between an
error and measurement uncertainty lies in the fact that an
error is a mistake and implies responsibility, whereas
measurement uncertainty implies no responsibility (Pitard,
2006). Uncertainty, an adjective describing an acceptance of
a lack of knowledge in some measurements, can be aleatory
or epistemic; aleatory uncertainty has to do with chance with
no ability to predict the outcome, whereas epistemic
uncertainty has to do with knowledge and an ability to
predict the outcome. According to Gy (2004), sampling of
particulate materials is always an aleatory operation.

For illustrative purposes, this paper investigates the effect of
sampling bias on the grade of iron ore and how such a bias

affects the revenues derived from marketing of the product. A
full description of the non-conditional Gaussian simulation
product in a 1500×1500 m domain2 using normal-score
transformations of a parent distribution of the percentage Fe
content in iron ores is described in Minnitt (2013, 2017). The
iron ore simulations produced in this way constitute the
daughter distributions kriged into a 150×150 domain used in
this analysis. The 150×150 domain provides a common
starting point from which to compare the effect of introducing
error and bias to the sampling of the iron ore distribution.

Four sampling events were defined in this study. The first
produced a control data-set on a 10×10 grid, where the actual
percentage Fe is plotted against the estimated percentage Fe
with no error and no bias, as shown in Figure 7a. A second
sampling event of the actual percentage Fe on a 10×10 grid is
plotted against the estimated percentage Fe including 10%
error, but with no bias, as shown in Figure 7b. A third
sampling event of the actual percentage Fe on a 10×10 grid
included 10% error with a 0.9× bias (Figure 7c), and a fourth
event of the actual percentage Fe on a 10×10 grid included
10% error with 1.1× bias, as shown in Figure 7d. Without the
influence from poor sampling, the scattergram would be a
straight line lying at a small angle to the 45-degree line of
the perfect estimator. The effect of the strong negatively
skewed the distribution of iron ore grades is evident in the
scattergrams (Figures 7a to 7d), causing the tail to extend to
the lower left corner of the scattergram.



A comparison of grades of the actual and the kriged
percentage Fe data on a 10×10 grid, shown in the
scattergram in Figure 8, indicates that there is very good
correspondence between the actual and kriged sets of data.
Visually, the point cloud for the iron ore estimates is shifted
upwards so that the bulk of the values lie slightly higher than
the 45-degree line (Figure 8). The mean values differ by
0.007% Fe, while the standard deviation of the actual values
tend to be somewhat larger than the kriged values. In the
scatterplots in Figures 7a and 8, the actual 10×10 m block
values on the y-axis are control data that is compared with
the kriged 10×10 m blocks on the x-axis; there is no error or
bias in this iron ore data. 

As expected, the effect of adding 10% sampling error to
the actual percentage Fe grades simply enlarges the point
cloud of estimates, as shown in Figure 7b and Figure 9,
indicating an increased variability of sample values around
the perfect estimator and a negligible effect on the mean
percentage Fe grade. Mean grade increases marginally
(0.007%) from 45.095 to 45.102% Fe, but a 1.31% decrease
in standard deviation from 4.553% Fe to 3.243% Fe is found,
due to the smoothing effect commonly associated with
ordinary kriging estimates (compare Figures 8 and 9). 

Assume now that the starting points are the ordinary
kriged iron ore values with a mean of 45.102% Fe and
standard deviation of 3.243% Fe. Introducing a 10% error
into the sampling (with no bias) results in a negligible

change from the actual to kriged mean value of about
0.0016% Fe. The standard deviation, however, increases
from 3.243% to 3.758% Fe, a change of about 13.7% 
(Table II). This important result indicates that sampling
errors arising from changes in constitutional heterogeneity
simply expand the point cloud, resulting in greater variability
of the grades, but negligible changes in the mean value. 

However, when a bias is introduced, the scatterplots
indicate that the effect of the bias on the mean value is much
more severe than the effect of a 10% error, as is shown in
Figures 7c and 7d. 

In the case of 10% sampling error plus a 0.9×
multiplicative bias (Figures 10 and 7c), the mean decreases
by 10.16% from 45.102% Fe to 40.521% Fe, and the
standard deviation increases by 6.78% from 3.243 (Figure 9)
to 3.479% Fe (Figure 10). 

For the sampling error of 10% with a 1.1× multiplicative
bias (Figures 7d and 11) the mean increases 9.10% from
45.102% to 49.541% Fe, and the standard deviation
increases 19.81% from 3.243% to 4.044% Fe. 

With no sampling error and no sampling bias the actual
(y-axis) and estimated (x-axis) percentage Fe grades are
closely clustered around the 45-degree line – the unbiased
estimator. The variation in iron ore grades tends to average
out to approximately zero with repeated sampling over time.
The change in the spread of the histograms in Figures 10 and
11, because of the introduction of 0.9× and 1.1×
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Table II

Actual iron ore grades 45.095 4.553 45.102 3.243 45.102 3.243 45.102 3.243
Kriged iron ore grades 45.102 3.243 45.031 3.758 40.521 3.479 49.541 4.044
Difference 0.007 1.31 0.071 0.515 4.582 0.236 4.439 0.801
Percentage change 0.00016 28.77 0.0016 13.70 10.16 6.78 8.96 19.81
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multiplicative bias, is large, changing the mean grade from
40.521% to 49.541% Fe, a difference of approximately 9.10%
Fe. Negative sampling bias significantly decreases the mean
grade by 10.16%, whereas a positive sampling bias
significantly increases the mean grade by 8.96%. These
biases are unrealistically high, but they provide an insight
into the value-at-risk if biases were that high.

As already emphasized, generating biases this large in
the iron ore industry is unlikely, but the example used here
provides insight into how biases actually occur and how
sampling bias, rather than sampling error, is the chief cause
for concern in mineral and commodity trading. This is not to
say that the FSE can be ignored, but rather to emphasise that
sampling bias is a greater problem than sampling error
because bias tends to be cumulative; it does not usually
average out, even though it may change from time to time. 

Sales contracts between buyers and sellers of ores,
concentrates, and metal products specify lower limits on
grade and upper limits on deleterious elements for which
penalties are payable. The financial consequences of
systematic biased underestimation of the tailings grade are
reported by Carrasco, Carrasco, and Jara (2004) for a tailings
dump due for sale to another company. Approximately 96
000 t of tailings, supposedly containing 0.15% Cu but
actually containing 0.20% Cu, reported to the dump every
day. The bias of 0.05% Cu amounts to 48 t of copper per day,
or 17 520 t of copper every year. At a copper price of US
$6800 per metric ton, this represents an annual loss of
approximately US$120 million (Lachance et al., 2014).
Statistical analysis of the sampling procedures and metal
accounting systems are shown to provide control measures
allowing allocations of gold contributions from different
shafts to be established with confidence in the gold mining
industry (Bartlett, Korff and Minnitt, 2014).

Iron ore contracts are quoted in US cents and the
internationally agreed-upon unit of measure for iron ore
pricing is the dry metric ton unit (dmtu). A dmtu consists of
1% of iron (Fe) contained in a ton of ore, excluding moisture.
Iron ore is typically sold from South Africa at between 62%
Fe and 66% Fe (Otto, 2018, personnel communication), so
assuming a price of US$70 per ton for iron ore at a mean
grade of 63.805% Fe would make the dmtu price US 109.7
cents per ton. The price per ton is calculated by multiplying
the cents per dmtu price by the percentage of iron content, so
a 100 000 t shipment of iron ore with a grade of 63.805% Fe
should earn the producer or cost the customer about
US$7.0190 million. For a 10% sampling error due to
variations in the constitutional heterogeneity, the difference
in %Fe on a lot with a grade of 63.805% Fe is 0.0016%
(column 4, Table II), or 0.102% Fe, resulting in a US$11 230
difference, or 0.00116%, in the value of a 100 000 t
shipment. Holmes (2013) indicates that the overall precision
for iron ore grade specified in ISO 3082 varies depending on
the size of the shipment, and could vary from 0.17 to 0.275%
Fe for shipments varying from over 270 000 t to less than 15
000 tonnes, respectively. 

For a swing arm (falling stream) cutter sampling iron ore
at a nominal top-size of 32 mm with a flow rate of 10 000
t/h, equivalent to 2777 kg/s, at a belt speed of 4.3 m/s there
is about 646 kg on each metre of the belt. Cutter speeds and
cutter apertures on swing arm cutters vary from 200–800
mm/s and 30–100 mm respectively. These parameters mean
that given that the mass of the average increment, given by
Mass = (C*A)/(3.6*Vc), where C is the flow rate of ore in tons
per hour, A is the cutter aperture in metres, and Vc is the
cutter speed in metres per second, the average primary cut
could vary between 104 kg and 1388 kg, (Holmes, 2018,
personal communication). The average increment would be
about 463 kg every 10 000 t. A typical loading rate for iron
ore in some South African facilities is 8 000 t/h with peaks
up to 10 000 t/h, meaning a 100 000 t vessel could be loaded
in approximately 10 hours (Steinhaus, 2017). When
sampling lump ore according to ISO 3082 using minimum
parameters, i.e., a loading rate of say 10 000 t/h, a cutter
aperture of 100 mm, and a cutter speed of 0.6 m/s the sample



would consist of 45 increments of 463 kg, giving a 
composite sample of about 21 t (Holmes, 2018, personal
communication). So every 2222 t we take a 463 kg
increment, therefore the sampling rate is 0.21 kg/t.

The grade of an iron ore assay is constituted from the
contributions of individual fragments in a 21 t composite
sample as shown in Table III (van Niekerk, 2017). Using a
density of 5.15 g/cm3 the diameter, radius, volume, and
mass of a single particle in each individual size fraction is
calculated. Using the percentage mass distribution of a
typical lumpy ore, the mass of the size fraction in the
composite sample can be calculated. Knowing the mass of
one fragment, it is possible to calculate the number of
particles in each size class. It is well known that the larger
fragments of iron ore tend to have higher grades than smaller
fragments, so the iron content of each size fraction can be
calculated and is aggregated for each size faction (Table III).
The cumulative grade for the different size fractions in the 21
t composite sample of ore with a standard particle size
distribution as shown in column 7 of Table III, gives an
average grade of 63.805% Fe.

According to the most recent (fifth) edition of ISO 3082
(2017) for sampling iron ore, the overall precision at a 95%
confidence level varies from 0.34% to 0.55% Fe for
shipments from more than 270 000 t to less than 15 000 t,
respectively. For a 100 000 t lot, the overall precision is
0.38% Fe as given in the ISO 3082 (2017, Table 1) iron ore
standard.

The question is: how easy is it to make an error like this?
Assume a 21 t composite iron ore sample having a density of
5.15 g/cm3, and size fractions from –6.3 mm to +31.5 mm, is
extracted during loading of a 100 000 t vessel. The following
example is hypothetical and one could adjust the figures, but
the assumption made here is that poor engineering or lack of
maintenance of sampling equipment results in 12% of high-
grade fragments, ranging from 20 mm to +31.5 mm, being
excluded from the 21 t sample. However, as a corollary, the
volume of large particles not collected in the sample means
that space is available for an equal volume of small, low-
grade particles in the range –6.3 mm to –16 mm to be added
to the sample. It is suggested here that the biased sampling

equipment creates an exchange mechanism whereby small
volumes of the larger high-grade particles sizes excluded
from the sample are replaced by an equal (or much smaller)
volume of the smaller low-grade particles. Assuming that
small, low-grade fragments replace large, high-grade
fragments, the overall Fe grade of the sample is reduced from
64.805% to 63.69 %Fe, as indicated in Table IV. That is an
exchange of about 6.72% of the large for small fragment
sizes in the original 21 t composite sample. The percentage
sample mass loss from the 100 000 t shipment is not as
important as the loss of mass from the 21 t composite sample
itself resulting in a biased sample (Holmes, 2018, personal
communication).

According to van Niekerk (2017, personal
communication) the +25 mm fraction of the lot tends to be
missed during the sampling procedure. Assume further that
the percentage of fragments lost from the four largest size
fractions (+31.5 mm to +20.0 mm) shown in Table IV is
12%. This results in an exchange of 1411 kg of the larger
fragments for 1411 kg of the smaller fragments giving an
overall reduction in grade of 0.1061% Fe, due to bias in the
sampling equipment (Table IV). During the sampling process
approximately 0.6 million large particles exchange places
with 7.08 million small particles in the stream (Table IV),
giving rise to a negative bias in the sample. The exchanges
are never actually seen because the particles simply fall back
onto the incoming stream and continue to the loading bay of
the vessel.

The difference between the unbiased (63.805% Fe) and
biased (63.699% Fe) grades, shown in Tables III and IV, due
to the exchange between higher- and lower-grade fragments
produces a bias of 0.106% Fe. What is noteworthy is that the
bias remains the same (0.106% Fe) irrespective of the mass
of the composite sample collected for assay. The 0.106% Fe
bias in the grade for a 100 000 t load at a price of US$70 per
ton and the lot grade of 63.805% Fe would amount to a loss
of US$11 600, not much on a load worth US$7.0 million.
However, South Africa exports 60 Mt of iron ore annually,
and if 100 000 t shipments are used this amounts to 600
ships annually. Thus the cumulative losses in a year could be
as much as US$6.96 million.
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Sampling errors are those variations in the grade of the target
analyte that occur because of constitutional heterogeneity,
essentially differences in composition from one fragment of
ore to the next. Sampling errors have to do with variability in
assay values around the mean grade. Experimentation with a
simulated iron ore deposit indicates that the effect of
sampling error up to 10% has little or no impact on the mean
values, and as a result the financial implications of random
variability in iron ores is negligible. Sampling bias, by
contrast, has an enormously significant effect on the mean
grade of ores and is mainly responsible for financial losses in
mineral trade.

Sampling bias arises from poorly designed and poorly
installed sampling equipment that consistently favours
certain material characteristics in the ores being sampled. A
0.9× to 1.1× multiplicative sampling bias can result in major
changes in the means of the sample values and as a result,
significant financial losses or gains can be incurred if
sampling bias is undetected. These levels of bias are extreme,
but they serve to illustrate that it is bias rather than sampling
error that is responsible for potential financial losses. Careful
attention to sampling equipment performance and
maintenance is essential if unseen financial losses in the
trade of commodities are to be avoided.

It is suggested here, based on the particle size
distribution, that an equal or smaller volume of small, low-
grade fragments replaces relatively small volumes of the
large, high-grade iron ore fragments, excluded from the
sample due to biased sampling equipment. Current
indications are that biases in South Africa’s iron ore industry
are about 0.01% Fe, with probable losses of less than $638
per shipment or less than US$383 000 per annum on 600
shipments. If the status quo is not maintained, biased
sampling equipment could decrease the average grade of a
100 000 t shipment by 0.106% Fe, which would result in
losses of up to US$6.69 nillion in revenue for the South
African iron ore industry.
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