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An alternative pillar design methodology

R.W.O. Kersten1

Synopsis
The aim was to investigate stable pillar design procedures currently in use on chrome and platinum mines, 
subject them to a critical appraisal, and review some of the alternatives proposed in the literature. It is 
concluded that these pillar design methodologies suffer from drawbacks that can be detrimental to the 
mining industry and that an improvement is essential. 

It was decided that the increased availability of analytical models and failure criteria could be exploited 
to update the empirical to an analytical/empirical method. The proposed methodology adopted FLAC2D 
simulations using the Hoek-Brown failure criterion to calculate full stress-deformation curves for typical 
pillars. The mine stiffness concept was introduced to determine the pillar load, integrating the influence of 
the pillar and strata stiffness and mining geometry. 

The proposed methodology was calibrated by comparing experimental and predicted deformations and 
failure depth of pillars in one hard-rock mine. The conclusion was that the methodology is an improvement 
over the one currently in use. An improved factor of safety is given by the intersection point of curves for 
the stiffness of the system and the pillar strength.
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Introduction
The paper describes part of the findings of a PhD thesis (Kersten, 2016) on an alternative stable pillar 
design methodology. This publication contains sufficient information to implement the method for further 
interpretation and testing. A detailed comparison of measured and predicted data is dealt with in the thesis, 
and the results show that there is promise in the methodology. 

The design of stable pillars in mining is of fundamental importance, not only in the Bushveld Complex 
mines but throughout the mining industry. Wherever mining occurs, pillars are formed at some stage and 
it is essential to predict their behaviour, i.e. whether they will burst, yield, or remain stable. Although of 
crucial importance, pillar design still suffers from major shortcomings and weaknesses.

Owing to uncertainty, pillar designs have for the most part been conservative, with the possible result of 
the loss of millions of tons of ore by being sterilized and unavailable in the future. 

The first pillar strength equation was derived empirically by Salamon and Munro (1967) for coal mines, 
and was subsequently modified empirically by Hedley and Grant (1972) using data from a Canadian 
uranium mine. This equation for hard rock has been in use in a variety of mining scenarios in South 
Africa and elsewhere for over 45 years without modification. In the same period a series of codes, such as 
FLAC and TEXAN, as well as failure criteria such as the Hoek-Brown criterion, have been developed and 
updated but are not commonly used in the design of pillars. The majority of pillars in the platinum mines in 
South Africa are still designed using the modified Hedley-Grant strength equation in conjunction with the 
tributary area theory.

This paper is an attempt to improve the antiquated empirical system by incorporating analytical 
methods in the design methodology by:
    Investigating the pillar design method currently in use; its strengths and weaknesses
    Finding alternative methods in use; actual and suggested
    Proposing alternative methods for calculating the pillar strength and the loading system
    Calibrating the proposed method with underground observations. 

Current pillar design method: strengths and weaknesses
The Hedley-Grant pillar strength equation is based on the following relationship:
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[1]

where  k is the strength factor 
w and h the width and height of the pillar 
 and  variable exponential ‘constants’, 0.5 and –0.75 for 

hard rock mines 

str pillar strength.

Except for the width and the height of the pillar, the strength 
factor is based on back-analysis of failed pillars. In the absence 
of such data, the strength factor is assumed to be a fraction of the 
uniaxial compressive strength of the rock mass in the pillar; the 
value varies from 0.3 to 0.8. This is sometimes increased without 
sound scientific basis when no pillar failure occurs. This type 
of approach is not only wasteful but could also lead to regional 
failures. 

The uniaxial compressive strength, on which the strength 
factor is based, varies significantly in the industry, between 
mines, and individual mining areas. Numerous samples are 
required to obtain a statistical significant mean.

The stress imposed on the pillar is determined using the 
tributary area theory (TAT) based on the percentage extraction 
over an infinite area, depth below surface, and the rock mass 
density. The assumption of mining over an infinite area creates a 
condition of a ‘soft’ loading system affecting the pre- and post-
failure behaviour of pillars.

The above argument presupposes that the values using TAT 
and the modified Hedley-Grant equation provides the correct 
answer. From personal observations over 40 years it was found 
that in the majority of cases the predicted failure does not 
materialise, suggesting that the input parameters are overly 
conservative and/or the pillar equation is suspect.

Planes of weakness as well as softer layers cannot be 
accounted for by using the Hedley-Grant equation. 

It is the author’s opinion that the major reason for using the 
Hedley-Grant equation is its simplicity and that it is generally 
accepted by the industry as well as the authorities.

These shortcomings have been recognized by other authors, 
and alternative design procedures that cover some of the 
weaknesses have been developed. These are discussed below.

Alternative methods, in use and suggested
Esterhuizen (2003) highlighted the degree of uncertainty 
associated with each design parameter and discussed the 
influence of the variability of input parameters in the Hedley-
Grant equation, specifically the pillar strength factor k and the 
width, length, and height of a pillar. He ascribed the uncertainty 
to the inherent variability of the rock material and a lack of 
understanding of the way in which rock behaves. 

Determining the mean and standard deviations for the 
relevant quantities, he used the point estimate method to 
calculate the mean pillar strength with the standard deviation 
permutation using the Hedley-Grant equation.

Subjecting the pillars to a uniform stress, using the TAT, he 
determined the factor of safety as well as the probability of failure 
(PoF) of the pillars and the reliability of the result as:

Reliability=100(1 – PoF) [2]

A brief sensitivity study showed that for the specific model 
the reliability did not increase significantly above a FoS of 2.0. 
Also, an increase in depth increased the reliability by decreasing 
the influence of the pillar dimension variation.

The limit equilibrium model proposed by Malan and Napier 
(2006) simulates the progressive fracturing of the pillar sidewall, 
illustrated in Figure 1. The progressively created wedges are 
restrained by the hangingwall and the footwall seam-parallel 
stress s, the seam-normal stress n, and the shear traction, 
which is proportional to the seam-normal stress n. The method 
has the advantage that it proposes a quantifiable failure 
mechanism, but has not been used in general mine pillar design. 

Although the model describes the progressive failure process 
of a pillar, the pillar strength is obtained by determining the 
onset of failure as well as the reduction in strength as failure 
progresses.

Martin and Maybee (2000) studied the brittle failure of pillars 
in the Canadian Shield hard-rock mines and concluded that the 
dominant mode of failure was progressive slabbing and spalling. 
They investigated the commonly used empirical equations listed 
in Table I, which are based on failed pillars confined to w/h ratios 
less than 2.5.

Table I

Author Rock rype UCS (MPa) Equation k

Hedley and Grant (1972) Quartzite 230 133w
0.5/h0.75 133/230 = 0.58

Von Kimmelman (1984) Metasediments 94 65w
0.46/h0.66  65/94 = 0.69

Krauland (1987) Limestone 100 35.4(0.778+0.2222w)  35.4/100 = .35

Potvin (1989) Canadian Shield - 0.42 str(
w/h)

Sjoberg (1992) Limestone/skarn 240 74(0.778 + 0.222w) 74/240 = 0.31

Lunder and Pakalnis (1997) Hard rocks - 0.44 str(0.68 + 0.52)k

h

h
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Martin and Maybee (2000) concluded that:
‘Because at pillar w/h > 2 the confinement at the core of the 

pillar is increasing significantly, the use of Hoek-Brown brittle 
parameters will be less appropriate. It should be noted that the 
pillar-failure database shows that there are only a few pillar 
failures for pillar w/h > 2, hence, the empirical pillar strength 
equations should be limited to pillar w/h < 2’.

Joughin, Swart, and Wesseloo (2000) uses the risk-based 
approach to incorporate the effect of the variation in rock mass 
properties as well as pillar dimensions, using the Hoek-Brown 
failure criterion, to calculate the strength of individual pillars. 
They also used the point estimate method to evaluate the 
influence of variable rock mass conditions and pillar geometries.

The following parameters were included:

    The mean and standard deviation of the results from 
all permutations of the uniaxial compressive strength, 
geological strength index, and values for pyroxenite and 
chromitite 

    Variation in pillar dimensions
    Span variation of bords
    Composite pillars consisting of chromitite and pyroxenite.

An axisymmetric nonlinear finite element model (PHASE 
2) was used to calculate the individual pillar strength for all the 
abovementioned permutations, with the output given in terms of:

    Factor of safety
    Probability of failure
    Reliability.

The method was applied to an area where the results 
corresponded reasonably well with the number of collapsed 
pillars. 

Leach (2008) and the author researched the validity of the 
Hedley-Grant equation on large pyroxenite pillars at Nkomati 
mine. During discussions it was decided to investigate the 
influence of mining span on pillar loading. On the basis of these 
discussions, Leach (2008) prepared a report for Nkomati mine 
dealing with pillar strength in thick orebodies with limited lateral 
extent using FLAC3D to calculate pillar strength and stress 
distribution. 

The resultant force/closure curves and the calculated load line 
are shown in Figure 2. In all cases the local mine stiffness line 

crosses the pillar strength lines in the linearly elastic portion of 
the pillar curve, well before peak strength is reached. 

The procedure included the effect of small spans due to the 
limited lateral size of the orebody, strata stiffness, full pillar 
strength curves based on the Hoek-Brown failure criterion, and a 
comprehensive stress calculation using FLAC3D.

The author (Kersten, 2009) proposed a modified TAT for 
back-analysis of manganese ore pillars at Black Rock mines. The 
pillar stresses were calculated using the TAT, dividing the entire 
area by the number of pillars to obtain the tributary area for each 
pillar assuming a constant pillar centre spacing. The force over 
the average tributary area was then divided by the area of the 
individual pillar, giving the resultant individual pillar stresses. 
Using the Hedley-Grant equation, the strength of each pillar was 
calculated. The strength and stress values for individual pillars 
with their varying dimensions are shown in Figure 3 for a specific 
set of pillars at the mine. The individual FoS values as well as the 
frequency distribution of the FoS can be interrogated.

Deficiencies that were addressed are the variability of mine 
dimensions and the use of individual pillar strength values.

The above brief summary shows that bord and pillar layouts 
can be designed using available analytical procedures, inclusive 
of variation in pillar and bord dimensions, weaker layers, and 
the interaction between hanging/footwall and pillar. The use of 
system stiffness has been reserved for the analysis of the post-
failure pillar behaviour (Ryder and Ozbay, 1990), but can be used 
in the design of stable, elastic pillars. 

Proposed alternative method for calculating pillar  
strength
The proposed alternative method for calculating the pillar 
strength is based on a semi-analytical approach using a 
mathematical model in conjunction with an empirical failure 
criterion.

    Determining the pillar strength using FLAC2D, axial 
configuration, simulating a circular pillar 

    Incorporating the modified Hoek-Brown failure criterion. 

It is assumed that the pillar/rock mass remains elastic until 
pillar failure occurs. 

Owing to its versatility, the FLAC2D programme can simulate 
the influence of the hanging- and footwall properties on pillar 
strength as well as complex interfaces. For the present study 
it was decided to confine the investigation to simple cases and 
calibrate these before embarking on more complex structures.
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In the present study, relevant variables included in the 
FLAC2D/Hoek-Brown model were confined to:

  A homogeneous pillar
  Use of known geotechnical parameters
   Development of a simple program for a specific set of 

conditions
   The mi value, hence the value mr, was based on the widely 

used RocLab programme developed by Rocscience.

Details of the program are given in Appendix I.
Using the FLAC2D/Hoek-Brown model, the following pillar 

behaviour was observed:

   The vertical stress is the lowest at the pillar edge after 
commencement of pillar failure.

   At the average peak pillar stress, pm, the vertical stress 
at the core of the pillar generally exceeds the uniaxial 
compressive strength of the rock.

   Pillar failure is a progressive process, moving gradually 
from the sidewall towards the centre of the pillar. 

   Changes in pillar geometry result in the change in the slope 
of the load-deformation curves as well as the post-failure 
behaviour. A similar effect has been described by Vogler 
and Stacey (2016) for different specimen geometries in 
laboratory studies.

   The FLAC2D/Hoek-Brown model is an iterative process 
incorporating the influence of progressive failure as 
stepping proceeds.

   The volumetric strain increment could be a possible 
measure of the depth of fracturing in a pillar.

Loading system
In the platinum mines geological losses due to faulting and 
‘potholes’ vary between 20% and 30% of the mining area, 
resulting in limited mining spans between the regional pillars 
caused by these losses. The influence of the limited span needs 
to be incorporated in the mine design and can be simulated using 
the concept of the load line of the system.

Since stable pillar design deals with the pre-failure state 
of the pillar, the theory of elasticity can be used to the point 
of pillar failure, allowing accurate calculation of the rock mass 
deformation and resultant pillar stresses. 

To incorporate the influence of limited span geometries it was 
decided to make use of the load line of a system. Although this 
concept deals entirely with the post-failure region of pillars it can 
also be used for the design of stable geometries; stable implying a 
design with a safety factor in excess of unity.

To construct the load line, the force and displacement values 
need to be calculated. 

The closure can be calculated using the theory of elasticity. 
Figure 4 is a schematic drawing of an infinitely long slot in the 
third dimension cut at a depth of h m below surface having a half 
span of l m. The maximum elastic closure of a tabular excavation 
is given by equations for infinite as well as finite depth.

The equation for infinite depth is given by Budavari (1983): 

 [3]

where  di  = vertical or y-closure 
l = Half span (m) 

y = Vertical primitive stress component 
v = Poisson’s ratio 
G = Shear modulus of the rock 

 [4]

Mining depth in the Bushveld Complex varies significantly, 
and for shallow mines Equation [3] needs to be modified to cater 
for tabular excavation at finite depths:

 
[5]

where  = 2l/h
Equation [5] is attributed to Budavari (1983) as used in his 

lecture notes. The difference of displacement values between 
the two equations varies with depth. For 100 m depth, the finite 
depth equation gives a closure that is 50% higher, while with 
increasing depth the closure values converge, differing by only 
5% at 600 m. For the current investigation, Equation [5] was 
used.

The above equations deal with a two-dimensional geometry 
and the half span referred to above is the minimum span in plan 
of an excavation.

A simplified linear load line for a specific geometry can be 
determined in the following manner.

To prevent any vertical closure in an excavation, the total 
reacting force required has to be equal to the negative value of 
the product of the vertical primitive stress and the mined-out 
area. Applying this force at the centre of the excavation would 
have the same effect as a number of distinct units such as pillars, 

Figure 4—Schematic drawing of a slot mined at h
half span of 1 m
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for which the sum of the individual forces is equal to the total 
required resisting force.

The load line can then be constructed. At zero displacement, 
the total force required is plotted on the y-axis of the graph 
shown in Figure 5. For maximum displacement/closure, the force 
will be zero and is plotted on the x-axis. Connecting the two 
points gives the linear load line of a system (Figure 5).

The pillar resistance curve is based on the stress and 
displacement curve obtained using the axisymmetric FLAC2D 
model and the Hoek-Brown failure criterion. 

The intersection of the two curves gives the equilibrium 
condition of a specified two-dimensional geometry.

It must be pointed out that the slope of the FLAC2D/Hoek-
Brown-determined pillar load deformation curve for individual 
pillar geometries differs with pillar width as well as pillar height. 
The span of the excavation also changes the slope of the load 
line, and in conjunction with the changes in pillar slope affects 
the value of the equilibrium point significantly and hence 
the safety factor, especially in limited span, high stope-width 
excavations such as are generally used in semi-massive ore 
deposits.

It must be noted that the system stiffness curve can also be 
determined by incremental load changes, generally resulting in 
a slightly curved form. For the current proposition, the linear 
assumption is deemed acceptable; the approach and illustrative 
portion of the research assumes linearity but the method can be 
expanded to nonlinear equations.

The pillar/strata system equilibrium point is determined by 
the intersection point of two equations, assuming the load lines 
to be linear. 

The ground reaction curve is given by:

 [6]

The pillar resistance curve for one or more pillars:

 [7]

where  Fg = System force 
mg = Slope of the ground reaction curve 
dg = System closure 
Fp = Force on pillar 

pm = Pillar strength 
mp = Pillar stiffness 
dp = Pillar closure 
cg = Total overburden weight 
cp = Primitive force on pillar

The force at the intersection of the two curves given by 
Equations [6] and [7] is given by: 

 [8]

Since cg has been shown to be the overburden total load over 
the mined-out area Am, it can be expressed as:

 [9]

The slope of the ground reaction curve, mg, is:

 
[10]

where is the maximum deflection of the opening as calculated by 
Equation [5]. Equation [8] can be extended to:

 [11]

In practice, there would be a regular layout of approximately 
equally sized and spaced pillars. If the pillar centre distance is C, 
a strip with width equal to C can be created over a longer distance 
with span L.

The maximum deflection in the absence of pillars is given by 
Equation [5]. The resistance required to prevent any deflection is 
the weight of the strip of width X over the panel length L.

The system load, cg, is:

 [12]

The slope of the ground reaction curve is then:

 [13]

The pillars will still have individual closure response. If the 
maximum pillar stress at failure is pm  the pillar closure at the 
point of failure is:

 [14]

where h is the stoping width.
The pillar load at failure is:

 [15] 

where w is the pillar width.
As there is a system of pillars, the total number of pillars 

across the panel contained in the width X is  , then the total 
pillar resistance for the system is: 

 [16]

The slope of the pillar resistance curve is:

 [17]

The equilibrium force, F, is obtained by substituting the 
values of Cg, mg, and mp in Equation [8]. The factor of safety is 
then:

 [18]

Equations [8] to [18] were incorporated in an Excel 
spreadsheet to facilitate calculating the average pillar stresses and 
closures at the equilibrium point as well as the factor of safety.

An alternative formulation of the intersection of the force-
displacement suited for incorporation in a spreadsheet model is:

L
X
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The flow chart in Figure 6 is a schematic presentation of the 
steps involved in the FLAC2D/Hoek-Brown and the system-pillar-
equilibrium concept, SPEC.

Comparison of the proposed method with underground 

For calibration purposes Impala Platinum Mines was selected 
because sufficient rock mass property data (Impala Platinum 
Mines, 2012), as well as experimental observations on pillar 
fracturing and closure, was available (Piper and Flanagan, 2005).

Data from a six-month monitoring programme at 12 Shaft, 
Impala Platinum Mine, conducted to quantify the in-situ 
performance of grid pillars by means of rock mass measurements 
and monitoring, was presented by Piper and Flanagan (2005). 
The two parameters relevant to the present discussion are the 
relationship between pillar size and extent of fracturing and 
closure measurements in individual panels as the span increased.

The pillar geometry was back-analysed as per the sequence 
illustrated in Figure 6. 

A good correlation between the plastic strain component in 
the strain softening model (FLAC2D) and the measured inelastic 
deformations was found by Kersten and Leach (1996). Roberts 
(2017) introduced the concept of displacement ratio criteria for 
accurately predicting borehole breakout. It appears that the use 
of deformation/strain values offers an alternative approach for 
prediction of failure zones. In the current study the dimensionless 
volumetric stain increment (vsi) in the FLAC2D model was used.

Figure 7 shows the width of the measured fracture zone 
and the bracketing vsi values of 1e-2 to 3e-3. The measured 
reduction in width of the fracture zone with an increase in the 
pillar width is mirrored by the vsi bracketing the actual values. 

Closure measurements by Piper and Flanagan (2005; Figure 
8) shows a reduction in closure rate at a span of approximately 
30 m. This reduction is due to the effect of the barrier pillars, 
which are spaced at 60 m intervals on dip, while mining 
progresses further on strike, limiting the minimum span of the 
excavation. 

Figure 8 is a comparison of the measured closure values 
with calculated displacements using the proposed pillar system 

FLAC2D

FLAC2D
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equilibrium concept given above for the different mining spans 
and specific pillar geometries. 

To illustrate the effect of change in span, Figure 9 shows the 
force-displacement curves for half spans of 10, 20, and 30 m 
where the intersection points give the FoS of 1.24, 1.05, and 0.98 
respectively.

Malan and Napier (2007, 2011) conducted research in the 
same area as Piper and Flanagan (2005), after further mining 
had been done, using the TEXAN code to calculate the individual 
pillar stresses. The individual pillar stresses, calculated using the 
pillar system equilibrium methodology, and with the same elastic 
constants, compare well with the values obtained by the TEXAN 
code (Table II). As can be expected, the value obtained by the 
tributary area theory is higher.

In summary:

    The extent of the fracture zone can be predicted reasonably 
accurately using the volumetric strain increment criterion.

    The amount of closure can be predicted within reasonable 
accuracy. 

    The average pillar stresses agree closely with those 
obtained using the more elaborate TEXAN code. 

The combination of the FLAC2D/Hoek-Brown model and the 
system/equilibrium method can be used to obtain realistic values 
for the average pillar stress, strength, closure, and the factor of 
safety.

Summary and conclusions
It was found that the current bord and pillar design, using 

the generally accepted empirical Hedley-Grant equation in 
conjunction with tributary area theory, needs revision. With 
the availability of analytical methods and failure criteria, it was 
decided to determine whether it is possible to create an analytical 
solution to replace the empirical approach. 

The proposed methodology uses the load line of the system in 
conjunction with FLAC2D and the Hoek-Brown failure criterion to 
calculate pillar deformation and failure strength. The intersection 
point of these two curves gives the equilibrium pillar stress 
and deformation of the bord and pillar configuration. The pillar 
edge failure, predicted using a strain-based criterion, as well the 
elastic deformation, agreed reasonably well with underground 
measurements. 

The stage has been reached where the methodology can be 
used to predict the influence of rock mass characteristics, most 
likely failure of pillars at greater depth, and alternative pillar 
mining methods. The concept deals with intact pillars but can 
readily be extended to the nonlinear regime.

The results of the investigation dealt with simplified 
geometries and pillars only, but with the versatility of codes 
like FLAC3D/FLAC2D/Hoek-Brown sets the stage for further 
investigation and calibration of the interaction between pillars 
and surrounding country rock using the above or similar 
available codes and failure criteria.
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The FLAC2D/Hoek-Brown model is fundamental to the approach 
adopted and is, therefore, given in detail in this Appendix. Below 
is the input file for a simple homogeneous pillar with given 
dimensions and properties. (This file can be transferred directly 
into FLAC2D).

new
ti
Hoek Brown Model for calibration
config axi ; Axial symmetry, simulating a circular geometry
gr 24,20; Grid of 24 by 20
gen 0,0 0,2 2.5,2 2.5,0; Circular pillar 2.5 m high with a radius 
of 2 m.
mod mo
;Pyroxenite
prop bu=54e9 sh=26.4e9 d=2800 *coh=14e6 ten=1e20 fric=46 ; 
Shea and, bulk modulus
call hoek2.fis                 ;<--(associated rule)
set hb_mmi=12.876 hb_mmr=6.4;. Roclab Modified and residual 
mr value     
set hb_ssi=.1889 hb_ssr=.094 ;0.0010 ; Roclab Modified and 
residual s values.
set hb_sc=52.1e6 ; Strength value as per Roclab programme
; Circular pillar FISH function for calculating the total force 
def load
sum2=yforce(1,jgp)*x(2,jgp)*0.25
loop i (2,igp)
sum2=sum2+yforce(i,jgp)*x(i,jgp)
end_loop

Table II

- system pillar 

Geometry APS
TAT 12 × 4 185

TEXAN model 12 × 4 159

SPEC 12 × 4 165

Barrier pillar (m)

TEXAN 12 × 36 63

SPEC 12 × 36 59
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ftot = 2.*pi*sum2
; (Total area of strip pillar - axi-symmetric mode)  
_area = pi*x(igp,jgp)*x(igp,jgp)         
load = ftot
aps  = ftot/_area
end
his yd i=1 j=20 ; Histories for selected points
fix x y j=1; Setting boundary conditions 
fix x y j=21
fix x i=1
*ini yv 1e-7 j=1; Setting loading rates
ini yv -1e-6 j=21
his aps; Results from FISH functions
his load
his xd i=19 j=10
set nsup=3000 ns=10 ; note, FLAC will cycle nsup*ns times; 
Number of steps
supsolve
end

Also included is the subroutine hoek2.fis Hoek-Brown failure 
criterion to be used in all the simulations of homogeneous pillars. 

FISH routine for Hoek-Brown failure surface
; the dilation angle is specified using hoek_psi
; (hoek_psi = fi for an associated flow rule)
;
def cfi
loop i (1,izones)
loop j (1,jzones)
if state(i,j) > 0 then
h_mm=hb_mmr
h_ss=hb_ssr
else
h_mm=hb_mmi
h_ss=hb_ssi
end_if
effsxx = sxx(i,j) + pp(i,j)
effsyy = syy(i,j) + pp(i,j)
effszz = szz(i,j) + pp(i,j)
tension(i,j)=0.5*hb_sc*(sqrt(h_mm^2+4*h_ss)-h_mm)
temp1=-0.5*(effsxx+effsyy)
temp2=sqrt(sxy(i,j)^2+0.25*(effsxx-effsyy)^2)
s3=min(temp1-temp2,-effszz)
if s3<0.0 then
s3=0. end_if
if s3<0.0 then
s3=0. 
end_if
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