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Determining the optimal orientation 
of ultimate pits for mines using fully 
mobile in-pit crushing and conveying 
systems
E. Hay1, M. Nehring1, P. Knights1, and M.S. Kizil1

Synopsis
Ultimate pit limit determination provides the outline of the optimal pit for use in the mine design process. 
Ultimate pit limit determination for truck and shovel haulage systems can be completed with proven 
mathematical optimality. For fully mobile in-pit crushing and conveying systems, a new ultimate pit 
limit determination method must be developed that includes the additional constraints of a straight 
wall for the pit exit conveyor and regularly flat pit floors. One of the major steps in the new method 
is determining the orientation of the straight wall. A proposed method of achieving this using the 
mathematical concepts of convex hulls and bounding boxes is presented, with an explanation as to 
how it could be implemented in an ultimate pit limit determination algorithm. This method allows the 
determination of ultimate pit limits for fully mobile in-pit crushing and conveying with a straight wall 
oriented to provide the most value to the project.
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Introduction
In-pit crushing and conveying (IPCC) mining systems have been applied in the mining industry for 
several decades, though the fully mobile variation has never been considered a strong option for use 
in the metalliferous sector. However, interest in these systems has grown significantly over the last 15 
years. This is due to their ability to increase the resource recovery (Nehring et al., 2018) and to reduce 
or negate the impact of several issues in the industry, such as:

➤	�� Increasing mining costs
➤ 	��Mines becoming larger and deeper
➤	�� Declining grades
➤ 	��Shortages of labour and large off-highway tyres
➤	�� High fuel costs.

Although there is increased interest in this topic, there is still a lack of fundamental understanding
of the operational constraints of IPCC systems which influence the pit design, and how planning differs 
from conventional truck and shovel (TS) systems. Both of these issues can be traced back to ultimate 
pit limit (UPL) determination during the various stages of feasibility studies. UPL determination refers 
to the calculation of the optimal shape and size of the pit that should be mined. ‘Optimal’ can refer to 
many facets of a pit, though it is usually accepted to mean the pit that results in the greatest financial 
value.

In this paper we introduce the UPL problem, highlight the differences required for use with fully 
mobile IPCC (FMIPCC) systems, and present current work towards FMIPCC UPL determination. We 
take a brief look at four common solution methods to the UPL problem, give an explanation of the 
differences required for use with a FMIPCC system, describe two existing partial solutions for FMIPCC 
UPL determination, present a potential solution for determining the orientation of the conveyor wall, 
and a potential implementation method for the solution.

Ultimate pit limits
The problem
As UPL determination occurs at the prefeasibility and feasibility levels of study, there is a large range of 
factors to include that are not fixed, such as which mining method is to be used (a TS method is usually 
assumed), various economic parameters such as commodity prices (use the current price or a forecast?), 
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and extraction rate. In order to progress, many assumptions are 
made regarding unknown or variable factors, and a block model 
is created that shows the value of all material present.

Once this model has been constructed, the problem becomes 
the calculation of what material should and should not be mined 
in order to extract the minimum volume of material that has the 
maximum financial value, respecting geotechnical constraints 
of the safe wall angles. At this stage of the mine planning 
process, the maximum financial value refers to the maximum 
undiscounted value. In order to maximize the net present value 
(NPV), which would be ideal, scheduling of the pit to comply with 
mining and processing constraints must be completed, which 
requires the input of the UPL. Following the calculation of this 
maximum value pit, the outline (or shell) is used to design the pit 
for each scheduled progressive pushback.

Solutions to the conventional UPL problem
When mining companies and research institutions first noted, 
in the 1960s that computers could aid in the solving of the 
UPL problem, a greater interest developed in the area. Many 
algorithms were developed to solve the UPL problem. The four 
most common solutions are floating cone, dynamic programming, 
Lerchs-Grossmann, and network flow. These methods are 
classified as either heuristic or rigorous, depending on the 
availability of mathematical proof of optimality. Rigorous 
algorithms have mathematical proof of optimality, whereas 
heuristics methods do not (Kim, 1978).

Floating cone
First described by Carlson et al. (1966), the heuristic floating 
cone algorithm has been widely used in industry due to its 
simplistic nature, fast running time, and ease of comprehension. 
As suggested by the name, the algorithm is based on 
the combined value of all blocks within each cone that is 
systematically imposed above each block from the top to the 
bottom of the block model. If the value of a cone is positive, all 
blocks within the cone are added to the optimal solution, and the 
algorithm advances to the next block in the model.

As this method looks at each cone in isolation, it is not able 
to factor in the joint support problem of UPL determination. The 
joint support problem describes the situation when in isolation, 
an ore block does not have a high enough value to carry the 
required waste removal by itself, but the waste may be common 
to more than one ore block, potentially making it worth mining 
both, as shown in Figure 1. Due to this, there is no guarantee of 
an optimal solution. Several methods of modifying this algorithm 
have been developed in order to counter this limitation, as 
summarized by Elahi Zenyi, Kakaie, and Yousefi (2011). While 
these modifications have improved the accuracy of the algorithm, 
they still do not guarantee the optimal solution as calculated 
using a rigorous method.

Dynamic programming
The original dynamic programming algorithm published for 
solving the UPL problem was by Lerchs and Grossmann (1965). 
It is designed to work on two-dimensional economic block 
models, in conjunction with a known set of pit wall angles that 
provide the dependency relationships between blocks. This 
algorithm always provides the optimal solution when operating 
on a two-dimensional block model; however, open pits are three-
dimensional. The solution originally presented to extend this 
method to three dimensions is to complete the algorithm for all 

vertical cross-sections of the block model, and then reassemble 
to a complete model. Due to each cross-section being analysed 
in isolation, they will inevitably not fit together in such a way 
that maintains all required safe pit wall angles. This results 
in a need to smooth out the walls in order to meet the pit wall 
requirements. This smoothing is both time-intensive and subject 
to error, with the resulting pit contour being far from optimum.

Several algorithms have been developed that have aimed to 
implement pit optimization using dynamic programming in three 
dimensions. Due to the complexity of the problem, they often 
become impractical. Johnson and Mickle (1970) and Johnson and 
Sharp (1971) conducted some of the earlier work in the area, and 
maintained a similar algorithm to the two-dimensional approach. 
However, when evaluating a block, the block value information 
from the current cross-section and the perpendicular cross-
section were taken into account, leading to more accurate results.

Koenigsberg (1982) presented the first example of a truly 
three-dimensional dynamic programming algorithm to solve the 
UPL problem. This algorithm considers the relationship between 
levels within a column, and columns within a cross-section, in 
addition to the block values from the current section of interest. 
Though this now gives the ability to work effectively in three 
dimensions, the algorithm is limited to having generalized wall 
angle constraints. This means that the pit wall angles must be the 
same in all directions.

Though there have been various advances in the dynamic 
programming approach to solving for UPL, it evidently remains 
impractical to use it accurately in three dimensions, for two 
reasons; pit wall smoothing from the two-dimensional method, 
and generalized pit wall angle constraints. Although these 
algorithms are classified as rigorous, the proof of this shows that 
they always achieve the optimum for the task assigned. This task 
does not yet factor in all variables, and as such, the optimum 
achieved is very rarely the true optimum for the block model.

Figure 1—Explanation of the joint support problem
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Lerchs-Grossmann
Lerchs and Grossmann (1965) also proposed an algorithm 
to solve the UPL problem in three dimensions. The algorithm 
is based on graph theory, where each node in the graph is 
representative of a block in the economic block model. This gives 
each node a weight equal to the economic value of a specific 
block that it represents. Directed arcs within the graph represent 
pit wall constraints and dependencies between blocks. Once 
the graph is set up, solving for the ultimate pit is analogous to 
solving for the maximum closure. In order to do this, Lerchs and 
Grossmann developed an algorithm that uses a series of naming 
conventions that dictate graph tree transformations that in turn 
solve for the maximum closure, i.e. the UPL.

Due to its ability to use generalized pit slope rules, to work 
truly in three dimensions, and always return the mathematically 
provable optimal solution, the graph theory algorithm has 
become the most commonly used algorithm in UPL optimization, 
with commercial implementation in several mine planning 
software packages, including Whittle4X, Datamine Studio 3, and 
DeswikCAD.

Network flow
In addition to presenting their graph theory algorithm, Lerchs 
and Grossmann (1965) noted that the UPL problem can be 
transformed into a network flow situation. In order to do this, 
the graph theoretic tree is transformed into a bipartite network, 
with each block in the model represented by a node in the 
network. Nodes that represent positive value blocks are linked to 
the source by arcs with capacities equal to the blocks’ economic 
value, while nodes that represent negative value material are 
linked to the sink by arcs with capacities equal to the absolute 
value of the blocks’ economic value. Dependencies between 
blocks are represented by joining the positive value blocks to 
their respective overlying blocks by arcs with infinite capacity. 
Once this is complete, the UPL is found by solving for the 
maximum flow/minimum cut of the network.

Like the graph theory algorithm, this method is also able 
to work with generalized pit slope rules, to work truly in three 
dimensions, and always return the mathematically provable 
optimal solution. Two aspects separate this method from the 
graph theory algorithm, the first being that it is relatively easy 
to understand in comparison to the graph theory approach. The 
second is that due to the importance of the solution of general 
network flow problems in operations research, a great deal 
of resources has been devoted to the development of efficient 
computer code to solve for maximum flows (Fox, 1978). The 
most recent development in solving for maximum flows is the 
pseudoflow algorithm (Hochbaum, 2008), which is implemented 
in DeswikCAD for the determination of UPLs.

Major differences in pit design
Due to the different operational nature of FMIPCC haulage 
systems compared with truck haulage systems, there are 
fundamental differences in the requirements of pit design (Dean 
et al., 2015). For a truck haulage system, the only requirements 
for pit design are haul roads providing access to the pit, and that 
the minimum mining width for the proposed equipment is met. 
These two requirements do not have any impact on the UPL; 
therefore, UPL determination can be completed as normal, with 
pit design to follow.

For FMIPCC systems, there are other requirements for pit 
design in addition to pit access and the mining width, due to the 
use of conveyors. For conveyors to work efficiently, they must be 
used in linear set-ups, similar to a strip-mining operation. This 
requires mining benches to be mostly regular and horizontally 
extensive (Atchinson and Morrison, 2011). Due to the nature of 
conveyor operations, having large horizontal traverses, it is also 
a requirement to have regularly flat pit floors to facilitate bench 
conveyor shifts.

The third requirement is the inclusion of a straight wall for 
the conveyor to exit the pit. Ideally, this straight wall should be 
long enough for the conveyor to reach to the top of the pit from 
the bottom without switching back. If the conveyor is required 
to switch back on itself, it is recommended that the number of 
transfer points be minimized due to the inefficiencies that stem 
from material hangups and spillage (Spilker, Albers, and Lordi, 
1980), which lead to an overall reduction in reliability of the 
series connected system (Frankel, 1984). Figure 2 shows an 
example pit with the various conveyors indicated. The ramp 
conveyor is located on the straight conveyor wall which is 
calculated within presented solutions.

Partial solutions to FMIPCC UPL determination

Floating trench
The most basic algorithm to adapt for use with FMIPCC systems 
is the floating cone algorithm. Its natural extension into working 
with a straight fixed wall is to lengthen the virtual cone that 
sequentially floats over a block model to collectively find positive 
value blocks and thus form a trench (Figure 3). The length of the 
trench could be modified depending on how many switchbacks 
of the ramp conveyor on the straight wall are appropriate for the 
study. This trench would be floated until a positive-value fixed 
wall location is found, and the traditional cones could be floated 
to solve for the best pit from this wall location. Following this, 
the algorithm could be reset, and the trench could find the next 
positive fixed wall location.

This floating trench algorithm, though simple, would inherit 

Figure 2—Layout of conveyors and straight conveyor wall
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the generic floating cones’ weaknesses, as well as introduce 
additional problems of its own. As the floating cone algorithm 
does not require a fixed wall, there is no need to run the 
algorithm more than once, since if a block is worth taking, it is 
added to the ultimate pit and the algorithm continues. However, 
with the introduction of a fixed wall in the form of a trench, the 
algorithm would have to be run for each potential wall location 
and orientation. Relocation of the trench and subsequent 
solving of the problem for each fixed wall location would add 
considerably to the solution time. This solution time would 
further increase given that the model would have to be solved 
for each of the four principal orientations of the block model. A 
further disadvantage of this potential solution is that taking a 
step back to an entirely heuristic solution is not justified given 
that rigorous solutions to the foundation problem exist.

Adaptation and extension of network flow
Another proposed solution is to extend the use of a rigorous 
method with a brute force approach to achieve the additional 
requirements of FMIPCC systems. This is done by taking the 
traditional UPL solution and including additional blocks on the 
lowest level, as described in Figure 4. While the initial solution is 
a rigorous one (Lerchs-Grossmann or network flow), this method 
then adds additional blocks to the ultimate pit with no regard for 
optimality. Due to the process of this algorithm, it is limited to 
using only the four principal directions of the model.

Critical analysis of current developments
While both of these proposed developments in FMIPCC UPL 
determination make some progress towards developing linearly 
extensive, flat pit floors and a straight fixed footwall, they are 
both subject to the same two limitations: the inability to calculate 
an UPL in any orientation for the straight footwall; and the use of 
non-rigorous methods, reducing the optimality of the results.

With regard to orientation, each of the existing developments 
can only use the four principal directions of the block model 
to locate a fixed footwall. As metalliferous deposits exist in 
any orientation, it is necessary to calculate an orientation that 
maximizes the potential value, working in the full 360° range.

Proposed orientation determination and implementation 
method
The first item to note when discussing an orientation 
determination method for FMIPCC UPL calculation is that 
reverting to a fully heuristic solution is not ideal. For this reason, 
the proposed solution runs as an extension to the rigorous 
network flow solution.

Figure 3—Adaption of floating cone to floating trench: (a) one level deep 
cone, (b) one level deep trench, (c) two level deep cone, (d) two level deep 
trench 

Figure 4—Artificial floor flattening process
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Secondly, due to the similarities between strip mining and 
FMIPCC systems, it is important to highlight that the schedule will 
closely resemble a stripping operation, radiating from the surface 
at the location of the straight conveyor wall and progressing 
across and deeper into the deposit. This in turn means that due 
to the time value of money, material closest to the surface, and 
closest to the straight wall where the conveyor is housed, retains 
more of its value than material further away.

Thirdly, as the size of the UPL increases with depth due to 
additional waste being removed to access lower ore blocks, the 
optimal orientation for the UPL may change, depending on how 
deep the flat pit floor is. As a result, the orientation of the UPL 
must be calculated for each level of the block model acting as the 
floor (i.e. limiting the levels which are available for optimization).

A simple block model is used to highlight processes 
throughout the algorithm (Figure 5). Although this block model 
is a simple, small example, the algorithm will operate on larger 
block models. Waste blocks (yellow) have a cost of –1, while ore 
blocks (green) have positive values of 1 or 4. The algorithms 
for orientation determination and implementation are detailed in 
the following sections, with an overview of the process provided 
in Figure 6. Note that the bottom level of the example model is 
omitted from Figures 7 and 8 as it does not form part of the UPLs 
of any solutions.

Orientation determination
In order to determine appropriate orientations for FMIPCC UPLs 
that maximize potential value in the creation of a straight fixed 
footwall, the user must provide an orientation step size and a 
discounting rate. The steps used to determine the orientation for 
any level of the block model are as follows.

1.    �Run a standard network flow solution with the level to 
be used as the flat floor set as the minimum level of the 
model. This will provide the blocks that are part of the 
traditional UPL from the surface down to the limiting 
level. This solution for the middle level being the floor is 
shown in Figure 7, with blocks that are part of the UPL 
shown in blue.

2.    �Starting with the deepest of the investigated levels, 
the centroids of the blocks that are part of the UPL are 
identified and their convex hull is determined. A convex 
hull is the smallest polygon drawn that contains all 
points of a set, in which a line drawn between any two 
points in the set does not protrude outside the convex 
hull (de Berg et al., 2008). The convex hulls of the 
top two levels of the example block model’s traditional 
solution are shown in Figure 8 in purple.

3.    �Rotation (c, current rotation) is set to 0°, the convex hull 
is rotated anticlockwise by c°.

4.    �A bounding box is formed around the convex hull, with 
an additional 0.5 block width distance added to each 
side/end. This bounding box is rotated c° clockwise 
to form the bounding box at orientation c° around the 
original convex hull for the level. Note that the side of 
the bounding box that is considered the conveyor wall is 
the side opposite when the current rotation angle is on a 
compass. The 0° bounding boxes of the top two levels of 
the example block model are shown in Figure 8 in red.

5.    �The bounding box is split into sections based on how 
long its sides are. The number of sections is the next 
integer below the length, e.g. if the bounding box is 5.4 Figure 5—Example block model
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Figure 8—Convex hull, bounding box, sections, and discounting powers of 
example block model

Figure 6—Algorithm overview

Figure 7—Example block model traditional solution with middle level as the 
floor



Determining the optimal orientation of ultimate pits for mines using fully mobile in-pit

955  ◀The Journal of the Southern African Institute of Mining and Metallurgy	 VOLUME 119	 NOVEMBER 2019

block widths long and 3.2 block widths wide, it will be 
split into five sections in the corresponding direction, and 
three sections in the other. Note that at 0°, the section 
lines are equal to the block edges.

6. �All blocks (ore and waste) within each small section
formed by the divisions made in step 5 are attributed a
discounting power based on their location with respect to
the conveyor wall, and their depth in the model. Blocks
that are between the conveyor wall of the bounding box
and the convex hull, as well as blocks inside the convex
hull, are included in the process. Blocks outside of the
convex hull towards other sides of the bounding box are
not given a discounting rate, as they are not required to
be mined. The value of each block is discounted using
the attributed discounting power and user-provided
discounting rate to a present value. The sum of blocks
on the level is taken and added to the cumulative total
for the current orientation. It is important to note that
the discounting powers attributed are not derived from
an actual schedule, but used to mirror the concept of
the time value of money. Figure 8 shows how these
discounting powers are attributed for the top two levels
of the example block model.

7. �Steps 3–6 are repeated for each orientation between 0°
and 360° at intervals determined by the user. The step
size provided is essentially a control over the resolution
at which the user wishes to investigate the model.

8. �Once all orientation values are calculated for the current
level, steps 2–7 are repeated for each level in the current
limited traditional UPL, progressing upwards towards the
surface.

9. �Steps 1–9 are completed again with each level of the
block model being set as the limiting flat floor level.

10. �At this stage, the algorithm has a total value for the
UPL for each orientation of the straight conveyor wall
(including the additional waste requiring extraction
to make a straight wall, and flat floor) and for each
potential flat floor level. It should be noted that although
these values are discounted in the same fashion as
present values are for scheduling purposes, it does not
reflect a scheduled pit. The discounting is only to mirror
the effects of the material being closest to the conveyor
wall being worth more than material further away.

11. �These total values are scanned, with the maximum value
orientation for each flat floor level being highlighted to
the user in a list of options to be chosen to run. Multiple
orientations on the same level that have the same value
will each appear in the list of options as one may be
more favourable for geotechnical reasons. Each option
is stored with its discounted value, its maximum value
orientation, and the level at which the flat floor is located.

Orientation Implementation
Once the orientation determination has been completed, and 
the user has selected which options to run, each option is 
implemented and solved using the following steps.

12. �Run the standard network flow solution with the
minimum level to be used set as the flat floor level of
the current option. This will provide the blocks that are
part of the traditional UPL from the surface down to the
option’s flat floor level.

13. �The centroids of the blocks which are on the flat floor
level of the UPL are used to create a convex hull,
bounding box, and sections at the option’s orientation,
in the same way as was carried out during orientation
determination.

14. �Once the sections have been created on the flat floor
level, additional dependencies are added to the model
from the far side of the model, towards the straight
conveyor wall. This provides the model with the
additional information required in order to create a
flat pit floor and straight conveyor wall. Note that this
process is only required to be completed on the lowest
level of the option. Figure 9 shows the additional
dependencies added to the middle level of the example
block model.

15. �This updated model is fed into the network flow solver
again, where it is rigorously solved for the FMIPCC UPL,
which includes a flat pit floor and a straight conveyor
wall. Figure 10 shows the rigorous solution of the
example model with the additional dependencies on the
middle level included.

16. �Steps 12–15 are completed for each option, with all
results being returned to the user in the form of an
undiscounted pit value, as expected for an UPL.

Discussion
Figure 10 shows the FMIPCC UPL of the example block model. It 
can be seen that the solution has the required regular flat pit floor 
and the straight conveyor wall on the bottom edge of the pit. This 
shows that the proposed algorithm for FMIPCC UPL orientation 
determination and implementation is successful in achieving the 
two additional requirements for this small block model.

Figure 10 also shows that block (3,7) on the middle level 
of the model is not mined as part of the FMIPCC UPL, whereas 
it is included in the traditional solution. This is due to the two 
additional blocks of waste that must be mined towards the 
straight wall in order to include it in the solution. These two 
blocks, and the three waste blocks above it that would require 
mining, have a net value of –1. This shows that the flat floor 
towards the conveyor wall is not being forced to be mined 
based on the bounding box, but that the final solution remains 
a rigorous process, resulting in the true optimum for that 
orientation and depth.

Figure 9—Additional dependencies added to middle level of example block 
model
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Conclusion
Due to the additional requirements of FMIPCC systems that affect 
the shape of the mine, the mine must be designed around the 
use of the system. As pit design is based on the input from UPL 
determination, the additional requirements of FMIPCC systems 
should be included in the UPL determination stage. In order to do 
this, a new method of UPL determination must be developed.

The presented method for FMIPCC UPL orientation 
determination and implementation operates as an extension to a 
traditional rigorous solution. The first phase uses the results of a 
rigorous traditional solution as the input, and returns maximum 
value options with differing depths and orientations. This 
process is completed by using heuristic methods built around 

the mathematical concepts of convex hulls and bounding boxes. 
This is used to implement discounted block values that mirror 
the time value of money with respect to their location in relation 
to the conveyor wall, in order to enhance the potential value of 
the mine. The second phase uses the various maximum value 
options from the first phase to add additional dependencies to the 
traditional solution, which are then solved rigorously for each 
case. This method leads to UPLs that have both regular flat pit 
floors and a straight conveyor wall. Although the example model 
used to explain the algorithm is small, the algorithm will operate 
on larger models. It should be noted that as the block model size 
increases, the time taken to reach a solution will increase, but as 
computing power is significantly more advanced now this does 
not pose a significant problem.

The inclusion of the additional requirements of FMIPCC 
systems in a UPL determination algorithm advances the ability 
to optimize and design the mine around the mining system. This 
work leads directly into testing and verification of the method, 
with potential avenues in the development of software.
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