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Integrated optimization and simulation 
models for short-term open-pit mine 
planning
V.F. Navarro Torres1, G.R. Mateus2, A.G. Martins3, W. Carneiro4, and 
L.S. Chaves5

Synopsis
Operational mine planning is a fundamental activity in mine operations and should take into account 
various characteristics of the material, the available mining faces, the requirements of discharge 
points, and production hiatuses due to reduced equipment operational efficiency, in order to efficiently 
allocate shovels and trucks and deliver the required tonnage and quality to the proper destinations. This 
paper presents an approach for optimizing short-term day-to-day mining operations using simulation. 
A mathematical model based on integer linear programming is developed. The solution is obtained 
through two different software packages using discrete event simulation (Arena) and a mathematical 
optimization model (Lingo). The two integrated models search an efficient solution to optimize a set of 
criteria by applying goal programming to hierarchically optimize five objective functions in a logical 
priority order under the operator’s standpoint and by simulating mining operations and unproductive 
events to evaluate how closely the optimized results are actually achieved. The integrated models are 
applied to a real large-scale iron ore mine in southeastern Brazil. A decision support system (DSS) 
prototype that meets the production requirements is also applied. The results show that an increase 
in the available loading equipment will not result necessarily in increased production, as expected. 
The models show satisfactory results and applicability to real and complex mining situations, and the 
formulation allows for easy adaptation to other mine situations. 
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Introduction
Mine planning involves solving complex problems while taking into consideration various parameters 
and events that may arise through the life of mine. Mining problems such as truck and shovel 
allocation, ore blending, pit optimization, multi-pit mining, and multiple destinations, etc., are very 
complex problems that depend on various operational factors, classified as NP-hard problems (Fioroni et 
al., 2008; Souza et al., 2010; Thiruvady, Ernst, and Singh, 2014; Patterson, Kozan, and Hyland, 2017; 
Samavati et al., 2017). In both long- and short-term mine planning, similar problems occur: a mine 
planner indicates the blocks to be extracted and the mining sequence, respecting quality, production, 
and any other constraints that may exist, but with different model, constraints, and timespan for each 
horizon (Blom, Pearce, and Stuckey, 2018). The loading and hauling operations are usually responsible 
for the highest operating costs in open-pit mining, representing 50–60% of the total mining operational 
cost (Ercelebi and Bascetin, 2009; Moradi Afrapoli and Askari-Nasab, 2017; Chaowasakoo et al., 
2017; Upadhyay and Askari-Nasab, 2018). The strong relationship between material handling systems 
and mineral processing plants implies that any delay in material handling causes extra operational 
costs for the mineral processing plant (Moradi Afrapoli, Tabesh, and Askari-Nasab, 2019). Therefore, 
the management and allocation of shovels and trucks are fundamental problems that require special 
attention and efficiency, so that short- and long-term production plans can be executed efficiently. 

Truck allocation in mining dispatching systems should take into account the ore quality and 
the production target required by the processing plant, and should comply with the stripping ratio 
and other important KPIs provided by the mining plan. Typically, efficiency of truck allocation relies 
on dispatchers’ experience since truck dispatchers usually allocate trucks at the beginning of the 
shifts, based on past data and user experience (Ta, Ingolfsson, and Doucette, 2013). Short-term and 
operational planning in open pit mines are recurrent problems solved by different methodologies, 
including linear programming (LP), mixed integer linear programming (MILP), heuristics and 
metaheuristics, stochastic optimization, and by applying simulation combined with other mathematical 
programming techniques.
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This paper presents a solution for the short-term mine 
planning problem through the techniques of optimization and 
simulation. The solution has some similarity to the simheuristics 
method, as described by Juan et al. (2015): it solves an NP-hard 
combinatorial optimization problem by combining a mathematical 
programming technique with simulation to deal with uncertainty, 
although it uses an exact model instead of a metaheuristic. The 
optimization is a MILP model that applies goal programming 
to hierarchically optimize five objective functions in a logical 
priority order under operational standpoint. The model also 
allows for easily modifying the analysed scenarios, equipment, 
discharge points, and material quantity and characteristics. 
The outputs are the allocation of loading equipment to the 
mining units, the number of trips each truck fleet must carry 
forward, and the destination-origin flows. The discrete event 
simulation model imports the optimization results and simulates 
the mining operations in order to fulfil the indicated values by 
the optimizer, considering the unproductive events that reduce 
equipment operational efficiency. The unproductive events 
include maintenance, bad weather, fuel supply, shift changes, 
and waiting for blasting for both shovels and trucks, and the 
probability distributions of unavailability events were determined 
based on experimental samples.

The problem described in this work differs from others in 
the literature in the complexity of the problem, by managing 
different objective functions and considering multiple possible 
destinations, multiple possible material types in the same mining 
unit, multiple acceptable quality ranges, multiple acceptable 
particle size ranges, and the mining sequence between units 
within a mine region. The presented solution can be easily 
adapted to be applied in other mines with different available 
equipment, infrastructure, and material types. The models 
also provide an integrated solution for attending to production 
requirements simultaneously with minimizing deviations 
on multiple objectives, and embody an original feature by 
incorporating particle size requirements, since beneficiation 
plants have different production circuits based on the particle size 
ranges, resulting in different products such as lump ore, sinter 
feed, and pellet feed. 

The paper also presents a case study using a database 
from one of Vale’s iron ore mines in southeastern Brazil. Three 
scenarios were examined, varying the number of items of loading 
equipment. The site produces material from three pits, each 
with a different planned stripping ratio, four lithological units, 
six quality parameters, and six particle size ranges. Quality 
control is necessary for maintaining a quality balance through 
the production phase and avoiding production stoppages due to 
inadequate quality products. In the case study, iron content is 
controlled by a lower bound while silica, phosphorus, aluminium, 
and manganese contents are controlled by an upper bound. There 
are four possible material destinations, including stockpiles, 
processing plants, and the waste dump. Both processing plants 
have a homogenization stockpile after the crusher in case 
production exceeds target or more material is required to achieve 
the objectives, five types of loading equipment, and four different 
truck fleets with a total of 34 trucks with different capacities and 
shovel compatibility. 

The problem statement is first presented, followed by an 
outline of the methodology, descriptions of the optimization and 
simulation models, and finally the case study and conclusions. 
A brief literature review on mathematical programming and 
simulation applications for short-term and operational planning 
is provided in Appendix A.

Problem statement
This work deals with short-term, day-to-day mine planning 
with dynamic allocation of shovels and trucks. The problem 
consists of selecting mining units for allocating shovels and then 
allocating truck fleets to these loaders, with the objectives of 
minimizing deviations in production, quality, and particle size, 
and maximizing waste extraction and mining rate in areas with 
more available material. The actual achievement of the optimized 
results is affected by unplanned downtime for both loading 
and hauling equipment, which is assessed by discrete event 
simulation based on practical data provided by the mine dispatch 
system.

The processing plants are designed to perform in ranges 
of feed particle size and metal, mineral, and/or contaminant 
contents, therefore, quality requirements are pre-defined 
according to the specifications of each processing route, and the 
same applies to acceptable particle size ranges. The operational 
planning must consider blending and size requirements, and 
multiple options of available material in order to allocate shovels 
and trucks to the mining units and discharge points in a way 
that maximizes the profit, maintaining the required final product 
quality. It is still common in the mining industry to encounter 
‘manual’ analysis and decision-taking for production and quality 
assurance based on visual observations, professional experience, 
and little available data. In these cases, the solutions are achieved 
in a trial and error process that may not consider all restrictions 
and targets simultaneously (Silva Jr., 2019).

It is important to stress that loading and hauling allocation 
cannot solve the short-term mine planning problem. The main 
task of truck and shovel operation is material handling, but it 
also has to comply with quality requirements for ore blending 
according to the daily extraction plan, which needs to comply 
with the extraction sequence to deliver the planned quality. 
Owing to the great structural and quality variability of iron 
ore deposits located in the Ferriferous Quadrangle Mineral 
Province, it is crucial at most mines to apply simulation in order 
to validate the short-term planning and indicate whether the 
planned objectives are achievable. The simulation may indicate 
planning problems arising both from equipment utilization 
and from ore quality in stockpiles and products. Stockpiling is 
also important in this case, since it contributes to ensuring the 
production tonnage and quality, providing material with known 
quality when any other production problem arise or when the 
active mining faces cannot meet product quality requirements. 
Therefore, it is also important that the stockpile quality is known 
and homogeneous.

The mine complex for which this solution is applied is divided 
into pits, each with its own stripping ratio defined by the mining 
plan and which may contain one or more mining areas that can 
be mined independently. Each mining area may comprise more 
than one mining bench, named according to the area of the 
mine and the elevation of the working floor of the equipment 
allocated to this bench. The benches are divided into mining 
units (MUs), corresponding to the minimum area required to 
allocate equipment, named with the bench name plus a sequential 
number to indicate the shovel mining sequence. Mining of the 
units within a mining bench should respect the order of the MUs 
(Figure 1). Each unit may contain as many subdivisions as the 
number of different material types, termed selective mining units 
(SMUs). The mining order of each SMU must respect the physical 
order of the mining sequence as the different material types 
appear in the MU. 
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Methodology
The proposed methodology consists of optimizing the loading 
and hauling fleet allocation in order to meet production, quality, 
size, and stripping ratio requirements. A simulation model 
implemented in Arena software version 14.70.6 informs the 
optimizer which MUs are available. The optimizer, implemented 
in Lingo software version 15.0, performs the MILP modelling 
with the objective of providing the ideal blending between the 
available MUs to comply with the defined requirements. The 
combined models are integrated in a software package named 
Simulavra, which determines the number of trips required for 
each truck and the allocation of each item of loading and hauling 
equipment in order to comply with production requirements with 
minimum deviations in other parameters. The optimizer defines 
the fleet allocation based on a MU 30 m wide, 50 m long, and 
10 m high, resulting in a minimum volume of 15 000 m³ for 
allocating the equipment at an available MU.

The MILP model performs five hierarchical optimizations 
and returns the number of trips required by each truck fleet to 
achieve the production targets in each MU and the allocation of 
the loading equipment. The simulator evaluates whether the fleet 
can achieve the proposed targets, considering hauling, loading, 
and dumping times, the intervals between failures, as well as 
their duration, and the probability of occurrence and duration of 
the various events affecting production such as maintenance, bad 
weather, fuel supply, waiting for blasts, or shift changes. Trucks 
must be directed to loading equipment, and after they are loaded, 
to discharge points. The decision which loading equipment to 
allocate the truck to is based on a number of factors, including 
the number of available items of loading equipment, queue 
size, compatibility between equipment types, and mining rate. 
The decision which discharge point the truck should be directed 
to may vary according to the type of material, availability and 
capacity of crushers, and compatibility between trucks and 
unloading points. 

The simulator calls the optimizer again if one of the following 
conditions occurs: 

	 ➤	�� Completion of 75% of the scheduled trips
	 ➤	�� The simulator remains 60 minutes without any trip of a 

truck
	 ➤	 ��The number of trucks waiting for allocation to loading 

equipment exceeds 60% of the total number of trucks. 

When any of these conditions occurs, the simulator return to 
the optimizer the part of the MU that could be executed and the 
optimizer generates a new solution with this new scenario to be 

simulated. Therefore, communication between the optimizer and 
the simulator occurs in a cyclic routine during the entire period 
until an ending condition is encountered. The ending conditions 
are (i) extraction of the entire planned mass, (ii) end of the 
simulation period requested, or (iii) all the available MU requires 
drilling and blasting.

Optimization model
The problem sets and parameters are presented in Table I and the 
decision variables are presented in Table II, separated into groups 
according to their function. The proposed optimization MILP 
model is composed of five optimization functions in a hierarchical 
order that prioritize the objectives according to the optimization 
order by employing the results from the first optimization as 
constraints to the second, and so on. The first objective function 
(Equation [1]) prioritizes achieving the planned production 
target required by longer-term mine plans. The production 
result enters as constraints for the second optimization function 
(Equation [2]), which reduces deviations in the total quality 
limits, accounting for the upper and lower limits of various 
control variables, such as elements, minerals, or physical/
mechanical properties of the rock. The third objective function 
(Equation [3]) minimizes the deviations in granulometry size 
fractions expected by adding the first two solutions (production 
and quality deviation) as constraints to the model. The fourth 
function (Equation [4]) maximizes waste extraction in an attempt 
to keep the stripping ratio close to the planned values. Finally, 
the fifth objective (Equation [5]) maximizes mining extraction 
at areas with more available material. Therefore, the proposed 
model prioritizes multiple objectives in a logical order under the 
operator’s standpoint.

[1]

[2]

[3]

[4]

Figure 1—Schematic of mining in bench 1000, divided into three sequential MUs
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                             [5]

The optimization functions presented are subjected to the 
following constraints:

[6]

   Table I 

  Description of the problem sets and parameters of the model
   Problem sets

   D	 Set of ore discharge points d (crushers and stockpiles)	 L	 Set of loading equipment l

   F	 Set of MUs f	 S	 Set of granulometry sizes s

   G	 Set of control variables g	 U	 Set of SMUs u

   H	 Set of hauling equipment h		

Problem parameters
   pitu	 Pit to which u belongs	 capu	 Maximum number of items of  loading equipment allowed simultaneously in u

   regu	 Region to which u belongs	 amassu	 Available mass in u

   nbu	 Mining bench to which u belongs	 atvu	 If ntypeu is ore it equals to 1, if waste, 0

   nfu	 Mining unit to which u belongs	 ntypeu	 Material type of u

   mass_regu	 Total available mass for loading in the region to which u belongs	 copd	 Informs if d is a crusher or a pile

   matdntype(u)	 Compatibility between material types in u and d	 benchf	 Mining bench to which f belongs

   frontf	 MU to which f belongs	 all	 Informs if l is available or in maintenance

   pmaxl	 Maximum productivity for l	 pit_compl	 Compatibility of each pit with l

   reg_compl	 Compatibility of mining region with l	 ocaph	 Ore nominal capacity for trucks from fleet h

   wcaph	 Waste nominal capacity for trucks from fleet h	 ctimeh	 Average cycle time for trucks from fleet h

   fnh	 Number of trucks in fleet h	 yd,h,l	 Binary matrix that informs if d is compatible with h and l

   cgu,g	 Control grade g of u	 partu,g	 Partition control grades g of u

   ubgd,g	 Upper bound of control g for discharge d	 lbgd,g	 Lower bound of control g for discharge d

   ubsd,s	 Upper bound of control s for discharge d	 lbsd,s	 Lower bound of control s for discharge d

   szu,s	 Size distribution s of available material in u	 str	 Planned stripping ratio

   time	 Total duration of the planned period, in hours	 eproda1d	�� Auxiliary variable related to minimum deviations above the production target for 
d, obtained in the first optimization

   eprodb1d	 Auxiliary variable related to minimum deviations below	 eug1	 Auxiliary variable related to the minimum sum of deviations of g to the upper 
	 production target for d, obtained in the first optimization	 	 boundary limits of d, obtained in the second optimization

   elg1	 Auxiliary variable related to the minimum sum of deviations of g to	 eus1	 Auxiliary variable related to the minimum sum of deviations of s to the upper 
	 the lower boundary limits of d, obtained in the second optimization		  boundary limits of d, obtained in the third optimization

   els1	 Auxiliary variable related to the minimum sum of deviations of s	 estr1	 Auxiliary variable related to minimum deviations in waste extraction in relation 
	 to the upper boundary limits of d, obtained in the third optimization		  to the planned stripping ratio, obtained in the fourth optimization

   Table II 

  Description of the decision variables of the model
Allocation variables

   xu,l	 Binary matrix that informs if l is allocated in u	 xb(f,l)	 Binary matrix that informs if l is allocated in b 
   xff,l	 Binary matrix that informs if l is allocated in f		

Number of trips variables
   wd,u,h	 Informs the number of cycles required to be performed by h from u to d

Mass variables
   Wu,d	 Mass from u discharged in d	 Wff,d		  Mass from f discharged in d

Deviation variables
   eprodad	 Deviation above the target production of d	 eprodbd	 Deviation below the target production of d 
   eugd,g	 Deviation of control variable g to upper boundary for discharge d	 elgd,g	 Deviation of control variable g to lower boundary for discharge d 
   eusd,s	 Deviation of control variable s to upper boundary for discharge d	 elsd,s	 Deviation of control variable s to lower boundary for discharge d 
   estr	 Deviation of the waste extraction to meet the planned stripping ratio	 dprodd	 Target hourly mass production for discharge d

Stockpile variables
   plcd,g	 Partition control grade g in the stockpile after discharge d	 gecd,g	 Control grade values g in the stockpile after discharge d 
   grlcd,s	 Size distribution s of material in the stockpile after discharge d	 mlcd	 Mass stockpiled after discharge d



Integrated optimization and simulation models for short-term open-pit mine planning

621  ◀The Journal of the Southern African Institute of Mining and Metallurgy	 VOLUME 120	 NOVEMBER 2020

 
                                          [7]

             [8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

       [18]

  

                                      [19]

[20]

[21]

[22]

[23]

[24]

 

                   [25]

[26]

[27]

[28]

[29]

[30]

[31]

                              
[32]

                 
[33]

[34]

[35]



Integrated optimization and simulation models for short-term open-pit mine planning

▶  622 NOVEMBER 2020	 VOLUME 120	 The Journal of the Southern African Institute of Mining and Metallurgy

                        
[36]

[37]

[38]

[39]

The allocation constraints ensure that for each SMU, 
identified by index u, only available loading equipment (l) 
may be allocated (Equation [6]). The amount of loading 
equipment allocated to u depends on its capacity (Equation 
[7]). The equipment allocated to a SMU must be allocated to a 
mining bench, xbf,l or to a MU, xff,l, to which the SMU belongs 
(Equations [8] and [9]). The equipment allocated to a bench or 
to a MU must be available equipment (Equations [10] and [11]). 
The mass moved in each bench or MU must be less than or equal 
to the allocated loading equipment’s capacity in order to allow for 
execution within the defined period (Equations [12] and [13]), 
and must equal the sum of the moved masses in the respective 
SMUs within this bench (Equations [14] and [15]). The mass 
moved from each SMU must be lower than or equal to the 
available mass in that SMU (Equation [16]). The total production 
for each discharge point must be equal to the total mass moved 
by all fleets from u to d (Equation [17]). Compatibility constraints 
ensure the loading equipment must be allocated to a mine or 
a region that it is compatible with (Equations [18] and [19]). 
Considering the size of the blocks used in the mine, the total 
number of fleet trips h from u to d must not exceed 60 (Equation 
[20]) nor the maximum possible trips calculated using truck 
cycle times, fleet number of trucks, and planned mining period 
(Equation [21]). Production constraints ensure minimum 
production targets are achieved in each crusher (Equations [22] 
and [23]). The ore production deviations for each crusher are 
calculated based on the difference between the actual production 
achieved by each discharge and target values (Equations [24] 
and [25]). Only compatible material types are sent from u to d 
(Equation [26]). Quality constraints ensure upper and lower 
quality limits are respected for each quality control variable g 
(Equations [27] and [28]). Particle size constraints ensure both 
upper and lower production target limits for each particle size 
range are respected (Equations [29] and [30]). The planned 
stripping ratio must be respected (Equation [31]). Production 
deviations obtained in each optimization for each d must be 
lower than or equal to the values obtained by the first hierarchical 
optimization (Equations [32] and [33]). Similarly, quality mass 
deviations related to the upper and lower limits must be lower 
than or equal to the values obtained by the second optimization 
(Equations [34] and [35]), and particle size deviations related to 
both upper and lower limits must be lower than or equal to the 
values obtained by the third optimization (Equations [36] and 
[37]). Equation [38] defines the total maximized waste extraction 
obtained in the fourth objective function, and deviations on waste 
mass for complying with the stripping ratio, obtained by the last 

optimization should be less than or equal to the result obtained 
by the fourth optimization solution (Equation [39]). 

Each objective function considers several of the presented 
constraints, but not all of them simultaneously. Function 
[1] minimizes the production deviations in relation to target 
production, constrained by the following equations: [6–8], [10], 
[12], [14], and [16–26]. The second optimization minimizes 
quality deviations subjected to the following constraints: 
[6], [7], [9], [11], [13], [15–25], and [27–33]. Function [3] 
minimizes production deviations of each particle size range, 
restricted by the same equations of the second optimization plus 
the constraint Equations [34] and [35]. The fourth objective 
function maximizes waste extraction restricted to the following 
constraints: [6], [7], [9], [11], [13], [15–25], [27–30], and [32–
38]. Finally, the last objective function maximizes mining rate at 
regions with larger amounts of available mass, constrained by 
the same equations of the third optimization, plus the constraints 
of Equations [36], [37], and [39]. 

Simulation model
The simulation is conducted by numerical evaluation of discrete 
events, considering the following factors: (i) interaction between 
the parts, (ii) dynamics of events occurrence over time, and (iii) 
randomness of events, providing ‘predictability’ with respect 
to the result of a mining plan through the testing of various 
scenarios to evaluate the effect of planning decisions. The 
simulation model may be seen as a set of entities that analyse the 
resources of the system to carry out an activity, subject to both 
productive and unproductive events. In this work, the entities are 
the shovel and trucks that will serve the available MU, loading 
resources, routes, and the unloading resources in order to load 
and haul the ore and waste to their proper destinations. Each unit 
operation is described as an element in the simulated system, has 
a particular operating logic, and is treated independently in the 
simulation model implemented in the Arena software. Figure 2 
provides a schematic diagram for a typical haul cycle in an open 
pit mine.  

The cycle starts with the loading process at the SMU, after 
which the truck is directed to an unloading point according to 
the loaded material type, travels to its allocated destination, and 
discharges. After unloading, the truck is allocated to a loading 

Figure 2—Hauling cycle
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point with an available shovel, which is not necessarily the same 
point as in the previous cycle, travels to the loading point, arrives 
and queues until the shovel is available for loading this truck, 
and starts a new cycle. Figure 3 shows the main logical cycle for 
an item of hauling equipment with its unavailability events, and 
Figure 4 shows the cycle for loading equipment. 

As shown in Figures 3 and 4, both loading and hauling 
cycles are subjected to the same unavailability events; however, 
the operational cycle differs and the hauling cycle involves more 
stages, which were used in the model to evaluate the moment in 
the cycle each unavailability event occurs, such as truck loading, 
travelling full, dumping, or travelling empty. The loading cycle is 
much simpler, since the equipment is relatively fixed in the MUs 
compared to the hauling equipment. The haul cycle considers that 
each truck must be instructed which loading equipment it should 
be directed to in order to be loaded, based on the following 
factors: number of available items of loading equipment, queue 
size, compatibility between loading and hauling equipment, 
and mining rate. The same decision must be made regarding 
the unloading point, which may vary according to the material 
type, the availability and capacity of crushers, and compatibility 
between the trucks and the unloading point. These indicators 
depend directly on the occurrence of the dynamic and random 
events, which are site-specific. At the end of the unloading stage, 
the occurrence of the unavailability events is verified based on 
the probability distributions of each event’s duration and the 
interval between consecutive events. The unavailability events 
include the waiting time for a blast, shift changes, supply, bad 
weather, and maintenance. Waiting for a blast is the time lost 

while equipment needs to move and stop operation for safety 
reasons until blasting takes place. Supply is assigned when 
the truck needs refuelling or any other supply. Bad weather is 
assigned when weather conditions affect the productivity and 
safety of employees and equipment, such as heavy rain and fog. 

All the events described are random and independent from 
each other, except the shift changes, which occur regularly, 
and are represented by probability distributions obtained from 
historical data in order to account for the frequency of occurrence 
and the event’s duration. Two tables were used to account for the 
probabilities of duration and intervals between events, one with 
the date and time of each event assigned by the truck operators 
and the other with the moment in the truck cycle each event was 
assigned by the truck operator, such as load, full travel, dump, 
or empty travel. The availability of each item of equipment is a 
consequence of equipment breakdowns that require corrective 
maintenance and of other events such as shift changes, 
refuelling, bad weather, and waiting for a blast. For each event, 
two customized probability distributions were generated based 
on dispatch system information and transformed to continuous 
distributions in the Arena software, one for the duration of the 
events and other for the time interval between events. 

Case study
The case study is from a large-scale iron ore mine in southeastern 
Brazil, using a database of one monthly mining plan. There 
are three pits, each of which should attempt to comply with 
a specific stripping ratio, four possible destinations (waste 
dump, stockpile, and dry and wet processing plants, each with 

Figure 3—Hauling cycle implemented in the simulation model 

Figure 4—Loading cycle implemented in the simulation model
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a homogenization stockpile after the crusher) according to the 
material type (haematite, itabirite, canga, or waste). The material 
delivered to the destinations is also evaluated according to six 
quality parameters (iron, silica, phosphorous, aluminium, and 
manganese contents, and loss on ignition) and six size ranges. 
The work was carried out considering seven mining regions, 
five types of loading equipment (Table III), and four different 
truck fleets, each compatible with specific loading equipment, as 
described in Table IV.

The ore and waste properties were extracted from the 
block model and the loading, unloading, manoeuvring, and 
holding times, as well as the truck speed are real data taken 
from the mine’s dispatch system, to account for the probability 
distributions of the cycle times, resulting in different distributions 
for empty trips, loading, full trips, unloading, and spot time. 
The database used also presents the queue time, which was 
not considered since it is an output of the simulation. Three 
scenarios were simulated for this study with differences in the 
number of items of loading equipment, as detailed by Table III. 
Scenario 1 considered a full-load fleet, including a CAT7295, 
a RH170, two L1350s, and four each of the CAT390 and 
CAT992. Scenario 2 differs from the first in that the CAT7295 
is not used, and scenario 3 has one CAT390 and one CAT992 
less than scenario 1. For each scenario, a 29-day period was 
simulated in order to account for monthly production. The 
period of 29 days was selected rather than the expected 30 days 
to allow for the completion of the simulation rounds without 
exhausting the mining monthly plan. The tests were run on a 
Windows 10 computer, i7 processor, 2.3 GHz, 16 GB of RAM, 
and it took around 20 minutes to conclude the monthly plan in 
each scenario, using the presented algorithm with five objective 
functions, 18 decision variables, and 34 constraints. Figure 5 
shows the cumulative ore production and Figure 6 shows the 
cumulative waste production obtained for the three scenarios.

Both ore and waste production presented an approximate 
linear behaviour over the 29 days, as expected. However, 
contrary to what was expected, the reduction in the loading 
equipment resulted in an increase in ore and waste production. 
This result led to the conclusion that there is an excess of loading 
equipment and possibly the removed equipment was allocated far 

from the destination points, with the long trip between loading 
and unloading resulting in reduced productivity. Figure 5 shows 
that ore production decreases close to the end of the period, while 
Figure 6 shows the opposite behaviour for the waste production, 
increasing over time. Figure 7 shows the stripping ratio over the 
simulated period for the extracted and remaining masses. 

The decreasing ore and increasing waste production rate 
result in a successive increase in the remaining stripping ratio, 
as expected. This leads to the conclusion that most of the ore 
in the evaluated SMUs was extracted to achieve the production 
target, and even when including an objective function to 
maximize waste extraction, most of the remaining material will 
be waste. The conclusions from this observation highlight the 
need to include multiple objectives in the optimization model 
and the high complexity of the problem, showing it is not always 
possible to comply with multiple requirements simultaneously. It 
is fundamental to keep to a constant stripping ratio through the 
life of mine and to respect longer-term mining plans, avoiding 

Figure 5—Cumulative ore production over the simulated period for each 
scenario

Figure 6—Cumulative waste production over the simulated period for each 
scenario

   Table III 

  Specification of the loading equipment considered in the simulation
   Loading equipment	 Productivity (t/h)	 Payload (m³)	 Scenario 1	 Scenario 2	 Scenario 3

   CAT390	 457	 6.0	 4	 4	 3
   CAT992	 626	 11.0	 4	 4	 3
   CAT7295	 1450	 19.0	 1	 0	 1
   L1350	 1200	 19.9	 2	 2	 2
   RH170	 1100	 21.0	 1	 1	 1

   Table IV 

  �Specification of the hauling equipment considered in 
the simulation

   Hauling equipment	 Payload (t)	 Number 	 Loading equipment

   CAT775	 64	 13	 CAT992 / CAT390
   CAT785	 135	 10	 L1350 / RH170 / CAT7295
   MT33000	 135	 2	 L1350 / RH170 / CAT7295
   Scania	 36	 9	 CAT992 / CAT390
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production shortfalls due to unavailability of MUs. In order to 
evaluate the quality achievements, the global iron content of the 
ore hauled to each processing plant is presented in Figures 8 and 
9 for the dry and wet plants, respectively, including the lower and 
upper quality targets.  

As expected, there is a large variation of the iron content 
through the simulation period. Such variation is due to a number 
of factors, including the very restricted monthly mining plan, 
geological variability of the rock mass, or spatial arrangement of 
the UMLs not favourable in the short term.

Conclusions
The integrated methodology presented represents a DSS that 
demonstrates an important solution to the mine planning and 
fleet management problems, especially in short-term day-
to-day activities. The contributions of the solution include 
applicability to complex industry problems, as shown by the case 
study, the possibility of managing different objective functions 
simultaneously, and easy adaption to other site characteristics. 

The results show relatively large variations in the ore quality 
delivered to the processing plants, which would be expected in 
such short-term horizons and may be related to the restricted 
monthly planned production, with limited available mass. 
The quality variation may affect adherence to and compliance 
of the indicators. This limitation could possibly be overcome 
by planning excessive monthly production. In order to make 
decisions, the ideal scenario would to simulate longer periods 
than a month in order to further adjust the simulator. 

Appendix A

Literature review
Mathematical programming and simulation are important 
techniques in the operational research field with significant 
applications in the mining industry (Fioroni et al., 2008). Early 
work in short-term planning of open pit mines was based 
predominantly on linear programming (Blom, Pearce, and 
Stuckey, 2018). Chanda and Dagdelen (1995) presented a goal-
oriented programming model for a coal ore blending problem, 
considering the economic results for minimizing deviations 
related to production and quality requirements. Pinto and 
Merschmann (2001) presented two linear programming models 
integrated with a simulator in order to allocate loading equipment 
to the mining faces with the objective of maximizing production, 
subject to quality and production requirements. Moraes et al. 

(2006) proposed a linear goal-programming model to optimize 
the composition of the iron ore stockpiled at Vale’s Cauê mine in 
southeastern Brazil. 

Talbi (2016) observed that the best results found for many 
optimization problems in science and industry are obtained 
by hybrid optimization algorithms, by combining optimization 
tools and/or machine learning. Souza et al. (2010) presented a 
hybrid algorithm based on the general variable neighbourhood 
search technique to deal with operational planning in open pit 
mining with dynamic truck allocation. The model considered a 
single discharge point and the objectives were to determine the 
extraction rate at each pit and minimize the number of trucks 
required to satisfy both production and quality goals. Samavati 
et al. (2017) applied the local branching technique combined 
with a new adaptive branching scheme, and also developed a 
new heuristic, to find a feasible solution for the open-pit mine 
production scheduling problem with the objective of determining 
the block extraction sequence that maximizes the project’s net 
present value. 

Integrating simulation and optimization is a common 
approach that provides a tool for verifying the likeliness of 
actually achieving an expected result, and the interaction of 
the simulator with the solver allows robust and near-optimal 
solutions to be found to complex or stochastic optimization 
problems (Juan et al., 2015). Camargo et al. (2018) proposed 
a method of integrated process simulation that supports the 
development of a decision support system (DSS) considering 
product quality, process productivity, and production costs to 
simulate and evaluate the financial impacts of management 

Figure 7—Stripping ratio over the simulated period for the extracted mass 
(primary vertical axis) and for the remaining mass (secondary vertical axis) Figure 8—Iron content fed to the dry processing plant for each simulated 

scenario 

Figure 9—Iron content fed to the wet processing plant for each simulated 
scenario



Integrated optimization and simulation models for short-term open-pit mine planning

▶  626 NOVEMBER 2020	 VOLUME 120	 The Journal of the Southern African Institute of Mining and Metallurgy

decisions along the production chain, production quantities, 
and product qualities. Juan et al. (2015) describe a general 
methodology, simheuristics, that allows the extension 
of metaheuristics through simulation to solve stochastic 
combinatorial optimization problems as a special case of 
simulation-optimization approaches, typically optimization-
driven, which can be classified either as an evaluation function 
or as an analytical model enhancement, depending on its 
implementation. 

Chaowasakoo et al. (2017) proposed a new approach based 
on differences in the match factor, which is the ratio of the 
truck arrival rate and the shovel service time, to evaluate and 
determine ranges for the number of different types of trucks in an 
optimal fleet considering different scenarios with heterogeneous 
fleets. Ozdemir and Kumral (2018) proposed an agent-based Petri 
net simulation model framework to evaluate the performance of 
material handling systems and the feasibility of the mine plan, 
observing that the approach can be seen as a risk quantification 
tool for technical uncertainties. Later, a further step was taken 
to link the simulation model to the optimization framework for 
real-time truck dispatching to improve the utilization of mining 
equipment and production efficiency in a two-stage system. 
The proposed system increased production by 9.4% in a shift, 
compared to the previous dispatching system used in the mine 
of the presented case study (Ozdemir and Kumral, 2019). 
Shishvan and Benndorf (2019) proposed a new multi-stage 
simulation-based optimization approach combining deterministic 
optimization with stochastic simulation in order to solve a 
transportation and scheduling problem in a continuous coal-
mining process. Stochastic optimization is also used for modelling 
and solving optimization problems under uncertainty. However, 
much of the recent work in stochastic optimization is related to 
long-term planning (Blom, Pearce, and Stuckey, 2018). 

There are many different approaches described in the 
literature for solving the truck and shovel allocation problem. 
Ercelebi and Bascetin (2009) described modelling approaches 
for truck and shovel operation and optimization, and used 
closed queuing network theory and LP for dispatching trucks. 
Ta, Ingolfsson, and Doucette (2013) presented a model for 
minimizing the number of trucks for a given set of shovels, 
subjected to production and quality constraints. Patterson, Kozan, 
and Hyland (2017) proposed a MILP formulation to schedule 
excavation and haulage activity at an open-pit coal mine with 
the objective of minimizing energy consumption in shovel 
and truck operations to meet production targets, considering a 
heterogeneous equipment fleet, explicit calculation of waiting 
time, and an energy consumption objective function. Upadhyay 
and Askari-Nasab (2018) presented an optimization and 
simulation framework to generate short-term plans within the 
constraints of the optimal long-term strategic plans, resulting 
in an uncertainty-based short-term schedule and simulated 
scenarios for decision-making. Moradi Afrapoli, Tabesh, 
and Askari-Nasab (2019) developed a multiple objective 
transportation model for real-time dispatching, attempting to 
minimize simultaneously the shovel idle times, truck waiting 
times, and deviations from the path production requirements. 
Marínquez, González, and Morales (2019) proposed an 
optimization model based on MILP considering multiple 
objectives, taking into account the usual restrictions of mine 
sequencing and both the time and cost for movement between 
phases of each shovel, by applying hierarchical and weighted 
sum methods.  

References
Blom, M., Pearce, A.R., and Stuckey, P.J. 2018. Short-term planning 

for open pit mines: A review. International Journal of Mining, 
Reclamation and Environment, vol. 33, no. 5. pp. 318–339. doi:  
10.1080/17480930.2018.1448248

Camargo, L.F.R., Rodrigues, L.H., Lacerda, D.P., and Piran, F.S. 2018. A method 
for integrated process simulation in the mining industry. European Journal 
of Operational Research, vol. 264, no. 3. pp. 1116–1129. doi: 10.1016/j.
ejor.2017.07.013

Chanda, E.K.C. and Dagdelen, K. 1995. Optimal blending of mine production 
using goal programming and interactive graphics systems. International 
Journal of Surface Mining and Reclamation, vol. 9, no. 4. pp. 203–208. doi: 
10.1080/09208119508964748

Chaowasakoo, P., Seppälä, H., Koivo, H., and Zhou, Q. 2017. Improving fleet 
management in mines: The benefit of heterogeneous match factor. European 
Journal of Operational Research, vol. 261, no. 3. pp. 1052–1065. doi: 
10.1016/j.ejor.2017.02.039 

Ercelebi, S.G., and Bascetin, A. 2009. Optimization of shovel-truck system for surface 
mining. Journal of the Southern African Institute of Mining and Metallurgy, 
vol. 109, no. 7. pp. 433–439. http://www.scielo.org.za/scielo.php?script=sci_
arttextandpid=S2225-62532009000700006andlng=enandnrm=iso

Fioroni, M.M., Franzese, L.A.G., Bianchi, T.J., Ezawa, L., Pinto, L.R., and Junior, G.M. 
2008. Concurrent simulation and optimization models for mining planning. 
Proceedings of the 2008 Winter Simulation Conference, Global Gateway 
to Discovery – WSC 2008, Miami, FL. pp. 759–767. IEEE, New York. doi: 
10.1109/WSC.2008.4736138

Juan, A.A., Faulin, J., Grasman, S.E., Rabe, M., and Figueira, G. 2015. A review of 
simheuristics: Extending metaheuristics to deal with stochastic combinatorial 
optimization problems. Operations Research Perspectives, vol. 2. pp. 62–72. 
doi: 10.1016/j.orp.2015.03.001

Manríquez, F., González, H., and Morales, N. 2019. Short-term open-pit mine 
production scheduling with hierarchical objectives. Mining Goes Digital: 
Proceedings of the 39th International Symposium on Application of Computers 
and Operations Research in the Mineral Industry (APCOM 2019), Wroclaw, 
Poland. CRC Press. pp. 443–451. 

Moradi Afrapoli, A., and Askari-Nasab, H. 2017. Mining fleet management 
systems: A review of models and algorithms. International Journal of 
Mining, Reclamation and Environment, vol. 33, no. 1. pp. 42–60. doi: 
10.1080/17480930.2017.1336607

Moradi Afrapoli, A., Tabesh, M., and Askari-Nasab, H. 2019. A multiple objective 
transportation problem approach to dynamic truck dispatching in surface 
mines. European Journal of Operational Research, vol. 276, no. 1. pp. 331–342. 
doi: 10.1016/j.ejor.2019.01.008

Moraes, E.F., Alves, J.M.C.B., Souza, M.J.F., Cabral, I.E., and Martins, A.X. 2006. Um 
modelo de programação matemática para otimizar a composição de lotes de 
minério de ferro da mina Cauê da CVRD. REM: Revista Escola de Minas,  
vol. 59, no. 3. pp. 299–306. doi: 10.1590/s0370-44672006000300008

Ozdemir, B. and Kumral, M. 2018. Appraising production targets through agent-
based Petri net simulation of material handling systems in open pit mines. 
Simulation Modelling Practice and Theory, vol. 87. pp. 138–154. doi: 
10.1016/j.simpat.2018.06.008

Ozdemir, B. and Kumral, M. 2019. Simulation-based optimization of truck-shovel 
material handling systems in multi-pit surface mines. Simulation Modelling 
Practice and Theory, vol. 95. pp. 36–48. doi: 10.1016/j.simpat.2019.04.006

Patterson, S.R., Kozan, E., and Hyland, P. 2017. Energy efficient scheduling of open-
pit coal mine trucks. European Journal of Operational Research, vol. 262, no. 2. 
pp. 759–770. doi: 10.1016/j.ejor.2017.03.081

Pinto, L.R. and Merschmann, L.H.C. 2001. Planejamento operacional de lavra de mina 
usando modelos matemáticos. REM: Revista Escola de Minas, vol. 54, no. 3. 
pp. 211–214. doi: 10.1590/S0370-44672001000300008

Samavati, M., Essam, D., Nehring, M., and Sarker, R. 2017. A local branching 
heuristic for the open pit mine production scheduling problem. European 
Journal of Operational Research, vol. 257, no. 1. pp. 261–271. doi: 10.1016/j.
ejor.2016.07.004

Shishvan, M.S. and Benndorf, J. 2019. Simulation-based optimization approach 
for material dispatching in continuous mining systems. European Journal 
of Operational Research, vol. 275, no. 3. pp. 1108–1125. doi: 10.1016/j.
ejor.2018.12.015

Silva Jr., A.L. 2019. Planejamento operacional de lavra: desenvolvimento de um 
modelo matemático para as minas de Capão Xavier e Mar Azul. Master’s thesis, 
Programa de Pós-Graduação em Instrumentação, Controle e Automação de 
Processos de Mineração (PROFICAM), Universidade Federal de Ouro Preto 
and Associação Instituto Tecnológico Vale. https://www.repositorio.ufop.br/
handle/123456789/11777

Souza, M.J.F., Coelho, I.M., Ribas, S., Santos, H.G., and Merschmann, L.H.C. 2010. 
A hybrid heuristic algorithm for the open-pit-mining operational planning 
problem. European Journal of Operational Research, vol. 207, no. 2.  
pp. 1041–1051. doi: 10.1016/j.ejor.2010.05.031

Ta, C.H., Ingolfsson, A., and Doucette, J. 2013. A linear model for surface mining 
haul truck allocation incorporating shovel idle probabilities. European Journal 
of Operational Research, vol. 231, no. 3. pp. 770–778. doi: 10.1016/j.
ejor.2013.06.016

Talbi, E. 2016. Combining metaheuristics with mathematical programming, 
constraint programming and machine learning. Annals of Operations Research, 
vol. 240, no. 1. pp. 171–215. doi: 10.1007/s10479-015-2034-y

Thiruvady, D., Ernst, A.T., and Singh, G. 2014. Parallel ant colony optimization for 
resource constrained job scheduling. Annals of Operations Research, vol. 242, 
no. 2. pp. 355–372. doi: 10.1007/s10479-014-1577-7

Upadhyay, S.P., and Askari-Nasabi, H. 2018. Simulation and optimization approach 
for uncertainty-based short-term planning in open pit mines. International 
Journal of Mining Science and Technology, vol. 28, no. 2. pp. 153–166. doi: 
10.1016/j.ijmst.2017.12.003     u


