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Evaluation of mineral resources 
carrying capacity based on the 
particle swarm optimization clustering 
algorithm
S. He1,2, D. Luo1, and K. Guo1

Synopsis
As minerals are a non-renewable resource, sustainability must be considered in their development 
and utilization. Evaluation of the mineral resources carrying capacity is necessary for the sustainable 
development of mineral resource-based regions. Following the construction of a comprehensive 
evaluation index system from four aspects, namely resource endowment, socio-economic status, 
environmental pollution, and ecological restoration, a method combining particle swarm optimization 
(PSO) and the K-means algorithm (PSO-Kmeans) was used to evaluate the mineral resources carrying 
capacity of the Panxi region southwest Sichuan Province, China. The evaluation method is data-driven 
and does not consider the classification standards of different carrying capacity levels. At the same time, 
it avoids the problems of local optimization and sensitivity to initial points of the K-means algorithm, 
thereby providing more objective evaluation results and solving the problem of subjective division 
of each grade volume capacity in carrying capacity evaluation. The algorithm was verified through 
UCI data-sets and virtual samples. By superimposing a single index on the carrying capacity map for 
analysis, the rationality of the evaluation results was validated. 
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Introduction
The sustainable use of resources is an issue that any country should pay attention to and monitor over 
the long term. In China, the world's largest energy producer, the rational exploitation and utilization of 
mineral resources is the key to the healthy development of energy production, the economy, and society. 
Xie, Zhou, and Lin (2005) pointed out that the population and economic development of China have not 
exceeded the natural resources carrying capacity, but some areas and natural resources are seriously 
overloaded. The mineral resources carrying capacity is the capacity of mineral resources to support 
human social and economic activities in a foreseeable period under certain resource and environmental 
constraints. Monitoring the mineral resources carrying capacity in natural resource exploitation must be 
conducted over the long term. 

An objective evaluation of the carrying capacity of regional mineral resources will enable rational 
development and utilization. However, at present there are few studies on the evaluation of the mineral 
resources carrying capacity, and mathematical statistical models or related integration methods have 
been adopted using indexes constructed from the aspects of economy, society, and environment. Li and 
Lyu (2018) used the set pair analysis and entropy value methods to evaluate mineral resources carrying 
capacity. Wang et al. (2016) used the entropy method. Wei (2006) used the fuzzy comprehensive 
evaluation method. Wanga, Shi, and Wan (2020) proposed the RCA-TOPSIS-RSR method to 
comprehensively evaluate the carrying capacity of mineral resource-based cities. In the process of 
classification, the RCA-TOPSIS-RSR method was used to classify the cities into high, medium, and low 
carrying capacity levels by evaluating the range of the rank-sum ratio (RSR). Bakhtavar and Yousefi 
(2019) used TOPSIS to rank 14 candidate well-sites and choose the best. 

In these studies, the determination of classification standards for different carrying capacity grades 
is generally subjective, done mainly by setting thresholds or demarcating ranges. At present, there 
is also a lack of common methods for classifying the carrying capacity. The clustering algorithm, a 
common method in data mining technology, is a data-driven method, without considering classification 
standards of different grades, to solve the problem of the subjective classification of carrying capacity 
grades, which makes the evaluation results more objective and reasonable.

In recent years, an increasing number of clustering algorithms have been applied to ecological 
environment evaluation, functional region division, and other problems. The K-means clustering 
algorithm is the most commonly used. Celestino and Cruz (2018) proposed using the PCA method 
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to reduce the data dimensionality and the K-means clustering 
algorithm to evaluate groundwater quality. Xua et al. (2018) 
proposed an improved entropy-weighted method and K-means 
clustering algorithm for an urban flood risk assessment model. 
Compared with the traditional clustering and TOPSIS methods, 
the improved algorithm achieved better results. Salehnia, Ansari, 
and Kolsoumi (2019) described the common characteristics of 
low-, medium- and high- yield wheat years by clustering climate 
data. In addition, the fitness function was used to evaluate 
the climate data clustering results with the AI, AOC, GA, and 
K-means algorithms. Wang, Wang, and Niu (2017) proposed 
an effective mapping framework for landslide susceptibility by 
combining information theory, K-means clustering analysis, 
and a statistical model. Liu, Peng, and Wu (2018) proposed a 
method to identify urban expansion, using K-means clustering 
of the gridded population density and local spatial entropy to 
cluster four geographical units through two indicators. Javadi et 
al. (2017) used K-means clustering to evaluate the vulnerability 
of groundwater, but pointed out that the limitations in the 
application of the K-means clustering algorithm still need to be 
considered.

The K-means clustering algorithm is one of the most widely 
used clustering algorithms. The algorithm is simple and easy to 
use and is suitable for processing large-scale data. It is suitable 
for the clustering of numerical attributes and provides good 
clustering results for superspherical and convex data (Wei, 
2013), and it converges to a local optimum (Lei et al., 2008). The 
shortcomings of the K-means clustering algorithm are also clear, 
as it is very sensitive to initial point selection. Improper initial 
point selection can easily cause the clustering result to converge 
to a local optimum or even provide an incorrect clustering result 
(Ismkhan 2018; Xiong, Peng, and Yagb, 2017; Ia and Li et al., 
2016; Ye et al., 2015; Lei et al., 2008; Sun, Li, and He et al., 
2008). At the same time, the K-means clustering algorithm is 
based on the gradient descent solution, which easily determines 
a local optimum but does not necessarily determine a global one 
(Xu, Xu, and Zhang , 2018; Ye et al., 2015). The simplicity and 
ease of use of the K-means clustering algorithm are also subject 
to its shortcomings. Optimizing the initial cluster centre and 
determining the appropriate number of clusters have therefore 
been the focus of research on K-means clustering. 

Although the K-means clustering algorithm has been widely 
used in ecological environment assessment, its clustering results 
may be only local optimal results instead of strictly global ones. 
At the same time, the clustering results may suffer instability 
problems. In this paper we propose an optimized K-means 
algorithm and apply it to the assessment of mineral resources 
carrying capacity.

Recently, there have been an increasing number of studies 
on improving the K-means algorithm, mainly combining an 
optimization algorithm with the K-means clustering algorithm. 
Niknam and Amiri (2010) proposed a hybrid algorithm based 
on particle swarm optimization (PSO), ant colony optimization 
(ACO), and the K-means algorithm to optimize clustering. Xu and 
Li (2011) and Xie and Li (2014) proposed a K-means optimized 
clustering algorithm based on the improved PSO algorithm. The 
powerful global search ability of the PSO algorithm was used 
to optimize the selection of the initial clustering centre. The 
clustering accuracy rate was higher than 80% through UCI data-
set verification. Because of the PSO algorithm, it could maintain 
its random behaviour better than the artificial bee colony (ABC) 

algorithm in determining the global optimum, and the result was 
superior to that of the ABC algorithm (Niknam and Amiri, 2010). 

In this paper, the proposed method combines the PSO and 
K-means algorithms to conduct a global search for particles in 
the solution space after initial random classification, thereby 
classifying the shortest distance of the K-means as its principle, 
and adopts the fitness function of K-means as the standard for 
detecting updated particles. A sufficient number of iterations 
is carried out to make the final clustering result both globally 
optimal and locally optimal, so that the fitness function value 
converges. This method entails carrying out a local search and a 
global search simultaneously, which is also different from other 
PSO-Kmeans algorithms, which first carry out a global search 
to find the optimal initial point, followed by a local search from 
the initial point. When this model is applied to the evaluation 
of mineral resources carrying capacity, the evaluation unit can 
be placed into different classes by global and local optimization 
based on the value of the multi-attribute index, and the number 
of each class also depends on the index data itself. This model 
also avoids the traditional evaluation methods (such as the 
traditional entropy method) to get the order of evaluation units 
after the comprehensive evaluation, and how to divide the grades 
and how many evaluation units of each grade to use can only be 
done using subjective experience.

Study area and data-set
Study area
The Panxi region is located in the southwest of Sichuan 
Province, and comprises Panzhihua City and the Liangshan Yi 
Autonomous Prefecture. The region borders Ya'an City in the 
north, Leshan City and Yibin City in the northeast, the Ganzi 
Tibetan Autonomous Prefecture in the northwest, and Yunnan 
Province in the east, south, and southwest. The Panxi region 
is one of the most resource-rich areas in western China and is 
characterized by large reserves of vanadium-titanium magnetite, 
which are excellent rare earth resources, and suitable resource 
development conditions. Abundant vanadium-titanium magnetite 
ore reserves have been identified, accounting for more than 
15% of the total iron ore reserves in China. Therefore, this paper 
mainly considers vanadium-titanium magnetite as a single 
mineral in its evaluation. The evaluation area consists of the 
districts and counties in Panxi with iron ore mining, production, 
and reclamation activities in 2017, including Dongqu, Yanbian 
County, and Miyi County of Panzhihua City, Xichang City, 
Dechang County, Huili County, Huidong County, Ningnan County, 
Yuexi County, Xide County, Mianning County, and Yanyuan 
County of the Liangshan Yi Autonomous Prefecture. There are 12 
counties (cities) in total, as shown in Figure. 1.

Data
To evaluate the mineral resources carrying capacity in the 12 
counties (cities) of Panxi, data was collected on social, economic, 
and environmental aspects, including the following.
	 ➤	�� The population and area data are from the Panzhihua 2018 

Statistical Yearbook and the Liangshan Yi Autonomous 
Prefecture 2018 Statistical Yearbook

	 ➤	�� The data on the remaining recoverable mineral reserves, 
employment in the mining industry, annual taxes, sales 
revenue from mineral products, actual production amounts, 
and treated areas are from the Department of Natural 
Resources of Sichuan Province.
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	 ➤	�� The waste emission coefficient data from iron ore mining 
came from the Manual of the First National Pollution 
Source Survey of Emission Coefficient of Industrial 
Pollution Sources (revised in 2010).

Methodology
Overall framework of the study 
The overall framework of the research method in this paper is 
shown in Figure. 2. It mainly consists of the following three 
parts.

	 ➤	�� On the basis of establishing an index system, the K-means 
clustering and PSO-Kmeans algorithms are used to cluster 
the evaluation units according to the attribute value of the 
index. The total distance of the class centre and the total 
distance within the class are used as criteria for evaluating 
the validity of the clustering results. The robustness of 
the algorithm is verified with UCI data-sets and virtual 
samples. 

	 ➤	�� Under the same index system, the entropy method is used 
to determine the weight, calculate the comprehensive 
evaluation value of the evaluation unit, and rank the 
carrying capacity of the evaluation unit. The ranking result 
is then compared with the optimal clustering result.

	 ➤	�� A single indicator is superimposed on the carrying capacity 
map, and the results are analysed in combination with the 
carrying capacity evaluation level to verify the results. 

Indicator system
The selection of mineral resources carrying capacity evaluation 
indicators is considered mainly from the economic, social, and 
environmental aspects (Li and Lyu, 2018; Wei, 2006). Clearly, 
the population carrying capacity (Wang,1998) and economic 
carrying capacity (Hou, 2007) are also evaluated. This paper 
will start from the four aspects of resource endowment, social 
economy, environmental pollution, and ecological restoration to 
reflect the mineral resources carrying capacity of human social 
and economic activities. At the same time, reference is made to 
the technical requirements for regional geological resources and 
environmental carrying capacity evaluation in accordance with 
the mineral industry standards of China. An index system is 
established consisting of resource support for mining, mining 
support for the economy, mining waste emission index, and 
degree of restoration of damaged areas.

Resource support for mining
The number of years that the resource endowment of each region 
can actually support the regional mining production is also the 

Figure 1—Schematic diagram of the Panxi area (counties/cities)

Figure 2—Methodology developed for the study
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sustainable period of its resources. The remaining recoverable 
reserves of the region divided by the actual annual mining rate 
were used to measure the degree of support of the resource 
endowment of the region to the mining industry, represented by 
R in Equation [1], which is a positive indicator.

[1]

where S is remaining recoverable reserves, and Pa is the actual 
annual mining rate.

Mining support for the economy
The social and economic benefits generated by the mining 
industry in each region are reflected by the proportion that 
mining contributes to the economy, the tax rate paid by the 
mining industry, and the proportion of employment in the mining 
industry, and is represented by E in Equation [2], which is a 
positive indicator.

[2]

where A is the added value of the industry, G is the GDP of the 
city/district, T is the annual tax, C is the sales revenue of mining 
products, Q is the mining employment, D is the total population 
of the city/district, and α,β,and γ are proportion indexes. These 
factors are determined by experts according to the general 
trend of national industrial added value, employment rate, and 
taxation growth trends. Take 2017 as an example. According to 
data from the Ministry of Industry and Information Technology, 
the country’s industrial added value in 2017 was the best in 
the past three years, indicating that industrial added value has 
an increasing impact on social and economic support, therefore 
experts assign a larger value to α. For 2017, α,β and γ are 0.45, 
0.30, and 0.25 respectively.

Mining waste emission index
To reflect the environmental pollution caused by waste discharge 
during the mining and production processes, according to the 
Manual of the First National Pollution Source Survey of Emission 
Coefficient of Industrial Pollution Sources (revised in 2010), the 
various waste emission coefficients generated during the mining 
and production of iron ore are determined, including industrial 
wastewater, chemical oxygen demand, petroleum, industrial 
waste gas, industrial dust, sulphur dioxide, and nitrogen oxides. 
Based on the above coefficients, the pollution emission index per 
square kilometre of ore production is calculated as a measure of 
the environmental pollution caused by mining, and is represented 
by P, which is a negative indicator.

[3]

where H is the output of mineral products, V is the total area 
of the city/district, Wi is the weight of class i waste in the total 
discharge, which is calculated by analytic hierarchy process. 
Ni is the discharge coefficient of class i waste, and Fi is the 
normalization coefficient of class i waste. The value of Fi is 100 
times the reciprocal of the maximum value of waste emission.

Degree of restoration of damaged areas
To reflect the ecological restoration of damaged areas during 
mining in each region, the damaged area that has been treated is 
divided by the damaged area that should be restored; that is, the 

treatment rate; and O is the restoration degree index of damaged 
areas in mining development, which is a positive indicator.

[4]

where Va is he damaged area that has been treated, and Vb is the 
damaged area that should be restored.

Evaluation method of the mineral resources carrying 
capacity based on the PSO-Kmeans algorithm
Cluster analysis is data-driven. Based on the establishment of 
the index system, clustering is performed by evaluating the 
similarity between the unit index attribute values. The most 
commonly used and simplest clustering algorithm is the K-means 
clusteriwng algorithm.

K-means clustering
K-means clustering is a classification approach based on 
partitioning. After the initial clustering centre has been randomly 
selected according to the number of clusters, the classification is 
redistributed by calculating the distances between other points 
and the clustering centre, and the clustering centre is iterated 
continuously using Equation [6] until the objective function J 
obtains the optimal solution via Equation [5].

[5]

[6]

where xi is the ith data object in the X data-set, cj is the jth 
clustering centre, and nj is the number of data objects in the jth 
clustering centre.

PSO-Kmeans clustering
The PSO algorithm is a group of behaviour algorithms simulating 
the foraging activities of birds. According to the optimal position 
of individuals relative to food and the optimal position shared 
by the group, the flight direction is changed, and the optimal 
position relative to food is reached after constantly updating the 
position and speed. Assuming that the particle flight space is an 
m-dimensional space, at the t iteration, the position and velocity 
vectors of the j-th particle are expressed as Xj

t = (xt
j1, x

t
j2, x

t
j3 ,……, 

x t
jm) and Vj

t = (v t
j1, v

t
j2, v

t
j3 ,……, v t

jm), respectively. The individual 
optimal position is found in each iteration, Pbestj = (pj1, pj2 ,…… 
pjm), and the global optimal position is Gbest = (g1, g2, …… gm). At 
each iteration, the particles update their speed and position with 
Equations [7] and [8], respectively (Shi and Eberhart, 1998).

[7]

[8]

where c1 and c2 are learning factors controlling the maximum 
duration of the iteration, with a value of generally 2, r1 and r2 
are random numbers between 0 and 1, and ω is the inertial 
weight (Equation [9]), which has the ability to balance local and 
global optima. Generally, the initial value of ω decreases rapidly 
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as the number of iterations increases. When the particle swarm 
converges to the optimal solution, the value of ω decreases 
slowly.

[9]

where ωmax and ωmin are the maximum and minimum inertia 
weights, tmax is maximum number of iterations, and t is current 
iteration number.

Therefore, PSO-Kmeans combines the two algorithms to 
conduct a global search for particles in the solution space after 
initial random classification, thereby classifying the shortest 
distance of the K-means as its principle, and adopts the fitness 
function of K-means as the standard for detecting updated 
particles. The steps of the mineral resources carrying capacity 
evaluation model proposed in this paper are as follows:

�Input: Number of particles N, number of iterations M, number 
of clusters K, data-set data, learning factor c1, c2, maximum 
and minimum weights ωmax, ωmin, maximum and minimum 
speeds vmax, vmin, maximum and minimum positions xmax, xmin.

�Output: fitness function value J, K clustering centres, data 
data-set classification, data data-set evaluation level.

Model steps:

Step 1: Initialization and random classification
j  Initializes each set value of particle velocity and input.
k  �The data-set is randomly divided into K classes, and the 

category centre of each class is calculated by Equation [6]. 
The category centre is the position of the particle. If the data-
set has m dimension, the position of the ith particle is xi = (x0

i, 
x1

i …… xk
i), xk

i = (Y i
k1, Y

i
k2 ……, Y i

km) Y i
km, is the m-dimensional 

data of the Kth clustering center of the ith particle.
l  �Equation [5] is used to calculate the fitness function value of 

the particle, which is taken as the initial value of the optimal 
fitness of the particle.

m  �Repeat k–l to generate the positions of N particles and 
take them as the best positions for individual particles. The 
minimum value of the individual optimal fitness of N particles 
is taken as the group optimal fitness, and the particle position 
under the fitness is taken as the group optimal position, Gbest.

Step 2: Construct a new generation of particles
The particle speed is updated in Equation [7] and controlled 
within [vmax vmin], while the particle position is updated in 
Equation [8] and controlled within [xmax xmin]. Update the 
individual optimal and group optimal positions of particles.
Step 3: Generate new cluster centres.
Step 4: Generate the optimal fitness and optimal position of 
individual particles.
Step 5: Generate the optimal fitness and optimal position of 
group.
Step 6: Reduce the inertia weight value.
Step 7: Divide Gbest into K clustering centres.
Step 8: Reclassify the data-set according to the principle of the 
shortest distance between K clustering centres.
Step 9: Calculate the fitness function value by Equation [5].
Step 10: Repeat step 2 – step 9 until reach the set number of 
iterations, then go to step 12.
Step 11: Output fitness function value J, K clustering centres, data 
data-set classification.
Step 12: Calculate the data mean value of each category of K 
categories, and assign each class an ordered label according to 
the mean value (Xu et al., 2018).

The process of mineral resource carrying capacity evaluation 
based on the PSO-Kmeans algorithm is shown in Figure 3. 

Virtual sample
Faced with the problem of small samples in actual engineering 
practice, one solution is to generate virtual samples in order to 
expand the number of samples and enrich the limited information 
content of small samples (Zhu, Chen, and Yu, 2016). Yang et al. 
(2011), according to smoothness, proposed a novel VSG method 
based on Gaussian distribution (VSGGD). The basic concept is 
to generate several Gaussian random numbers around a certain 
original sample, and keep the label unchanged. Based on the 
methods of Yang et al. (2011) and Ding (2013), the original 
data is transformed to a Gaussian distribution to generate virtual 
samples. There are many methods for Gaussian distribution 
transformation, such as square root transformation, logarithmic 
transformation, and BOX-COX transformation. We use the 
logarithmic transformation to construct a Gaussian distribution 
N(μ,σ2), where μ is the mean and σ2 the standard deviation, as in 
Equation [10]. The number of ore-producing areas is inherently 
small, so there is small sample problem. It is proposed to use the 
method of putting the virtual samples into the model together 
with the original samples, and then removing the virtual samples 
after classification. In this way, the consistency of the evaluation 
results obtained with the original samples and after adding the 
virtual samples is tested.

[10]

When x is 0 or a small number, Equations [11] and [12] are 
used to avoid negative numbers and wrong values.

[11]

[12]

Figure 3—Flow chart of the PSO-Kmeans clustering method
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Results and discussion
According to the previous modeling steps, use MATLAB software 
for modeling. The evaluation index data and weights are shown 
in Table I for data normalization and input as data-set. Input 
particle number N = 50, number of iterations M = 50, number 
of clusters K = 4, learning factor c1 = c2 = 2, maximum and 
minimum weights ωmax = 0.9, ωmin = 0.4, maximum and minimum 
speeds vmax = 1, vmin = –, maximum and minimum positions xmax = 
1, xmin = 0. Number of clusters K = 4, namely, the rating grade of 
data-set can be divided into four categories: high, medium-high, 
medium, and low.

By using the K-means and PSO-Kmeans clustering methods, 
evaluation unit clustering was realized using MATLAB software, 
and the carrying capacity rating was evaluated. Because the 
K-means and PSO-Kmeans algorithms randomly select initial 
points, different initial points may lead to different clustering 
results. Therefore, ten operations were performed with the two 
methods, and 80% probability in PSO-Kmeans method is the 
same clustering result after multiple operations. However, only 
50% of the probability under K-means is the same clustering 
result. The other clustering results are different, and the 
clustering results are unstable. The results of the evaluation units 
ranked by the entropy method and clustered by the PSO-Kmeans 
method are compared, as summarized in Table II. The clustering 
results under PSO-kmeans are shown in Figure 4. X6 and X12 
units are coincident after dimension reduction processing.

In order to prove the generalization ability of PSO-Kmeans 
and the robustness of the results, Iris and Wine in the UCI 
data-set were selected for experiments. Iris has 150 labelled 
4-dimensional samples; Wine has 178 labelled 13-dimensional 
samples. K-means and PSO-Kmeans were used for clustering, 
and the average accuracies of correct clustering are shown in 
Table III. It can be seen that PSO-Kmeans has good clustering 
ability for high-dimensional and low-dimensional data.

When the large data-sets of UCI are running well, in order 
to prove the stability of the evaluation results of the model, the 
virtual samples are expanded according to Equations [10]–[12] 
on the basis of the original samples, as shown in Table IV. The 
virtual samples are added to the original samples and put into the 
model to run 10 times randomly. The clustering results are shown 
in Figure 5. The probability of consistency with the evaluation 
results of the original samples is shown in Table V. It can be seen 

that, except for the large difference in X11 evaluation units, the 
evaluation results after adding the virtual samples are basically 
the same as the original evaluation results.

   Table I

  Evaluation unit and evaluation index
   Evaluation unit	          Resource support for mining      Mining support for the economy      	Mining waste emission index	     Degree of restoration of damaged areas 
                                                               R	                                                     E	                                                       P	                                                              O 
   Weights	 0.238868	 0.170344	 0.439427	 0.151361

   DongQu (X1)	 93.970161	 0.096818	 108.387237	 0.297373
   MiYi (X2)	 140.05729	 0.087796	 12.951945	 0.719569
   YanBian (X3)	 1026.576775	 0.106991	 2.548964	 0.757423
   XiChang (X4)	 415.790468	 0.112043	 2.001617	 1
   YanYuan (X5)	 221.057563	 0.026387	 0.147915	 0.070261
   DeChang (X6)                                         0	                                                          0	                                                            0		  0.770115
   HuiLi (X7)	 328.556428	 0.022085	 0.822992	 0.27494
   HuiDong (X8)	 1475.093053	 0.030054	 0.080008	 0.508197
   NingNan (X9)	 1661.962941	 0.068653	                                              0.104193                                                       0.1
   XiDe (X10)	 78.288835	 0.04702	 0.019142	 0.555556
   MianNing (X11)	 16.910695	 0.085449	 0.12899	 0.870486
   YueXi (X12)                                             0	                                                          0	                                                           0		  0.227273

   Table II

  Results of the entropy and PSO-Kmeans methods
   Evaluation unit	 Entropy method	 PSO-Kmeans

   YanBian	 High	 High
   XiChang	 High	 High
   NingNan	 High	 Medium-high
   HuiDong	 Medium-high	 Medium-high
   MianNing	 Medium-high	 High
   MiYi	 Medium-high	 High
   XiDe	 Medium	 Medium
   DeChang	 Medium	 Medium
   HuiLi	 Medium	 Medium
   YanYuan	 low	 Medium
   YueXi	 Low	 Medium
   DongQu	 Low	 Low

   Table III

  Classification accuracy of the two algorithms
   Data-set	 K-means	 PSO-kmeans

   Iris	 0.74 	 0.88 
   Wine	 0.82 	 0.86 

Figure 4—Clustering results under the PSO-Kmeans
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Comparison of the different methods

Comparison of algorithms
Both the K-means and PSO-Kmeans algorithms rely on Equation 
[5] as the objective function, and the number of iterations is 
50. After multiple calculations using the K-means algorithm, 
the clustering results are different, but the objective function 
values are convergent, as shown in Figure 6. After multiple 
operations, the PSO-Kmeans algorithm basically generates the 
same clustering result, and the value of the objective function 
also converges, as shown in Figure 7. The optimal clustering 

result is obtained when the distance within the class is 
minimized while the distance between the centres of the classes 
is maximized. That is, the difference between classes is larger, 
while the distance within classes is smaller. The total distance of 
the class centre and the total distance within the class were used 
to evaluate the validity of the two methods. After 10 random 
runs, the average values of the total distance to the centre of the 
class and the total distance within the class of the two methods 
are obtained, as summarized in Table VI. It can be observed that 
the total distance of the class centre under the PSO-Kmeans 
algorithm is larger than that under the K-means algorithm, and 
the total distance within the class is smaller than that under 
the K-means algorithm. Therefore, the clustering results of the 
PSO-Kmeans algorithm are better than those of the K-means 
algorithm, and after global and local optimization of the initial 
points with the PSO-Kmeans algorithm, the clustering results 
show almost no difference and are more stable than those of the 
K-means algorithm.

Figure 5—lustering results after adding virtual samples

   Table IV

  Virtual samples
   Evaluation unit	 R	 E	 P	 O

   X1’	 1.972990 	 0.985958 	 4.034978 	 1.473301 
   X2’	 2.146306 	 0.943477 	 3.112335 	 1.857073 
   X3’	 3.011391 	 1.029348 	 2.406364 	 1.879338 
   X4’	 2.618875 	 1.049385 	 2.301381 	 2.000000 
   X5’	 2.344505 	 0.421393 	 1.170012 	 0.846714 
   X6’	 0.000000 	 0.000000 	 0.000000 	 1.886556 
   X7’	 2.516610 	 0.344104 	 1.915396 	 1.439238 
   X8’	 3.168819 	 0.477896 	 0.903134 	 1.706032 
   X9’	 3.220621 	 0.836663 	 1.017837 	 1.000000 
   X10’	 1.893700 	 0.672282 	 0.281997 	 1.744727 
   X11’	 1.228161 	 0.931705 	 1.110555 	 1.939762 
   X12’	 0.000000 	 0.000000 	 0.000000 	 1.356547 

   Table V

  �Consensus probability of evaluation results under  
virtual samples

   Evaluation unit	 Evaluation grades 	 Consistency probability

   DongQu (X1)	 Low	 100%
   MiYi (X2)	 High	 70%
   YanBian (X3)	 High	 100%
   XiChang (X4)	 High	 100%
   YanYuan (X5)	 Medium	 100%
   DeChang (X6)	 Medium	 90%
   HuiLi (X7)	 Medium	 100%
   HuiDong (X8)	 Medium-high	 80%
   NingNan (X9)	 Medium-high	 90%
   XiDe (X10)	 Medium	 90%
   MianNing (X11)	 High	 40%
   YueXi (X12)	 Medium	 100%

Figure 6—K-means objective function value trajectory

Figure 7—PSO-Kmeans objective function value trajectory

   Table VI

  Comparison of the performance of the two algorithms
   Method	 Total distance	 Total distance of 
	 within class	 classification centre

   K-means	 5.564292	 7.052792
   PSO-Kmeans	 1.428085	 9.263421
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Comparison of evaluation methods
Under the entropy method, the number of each grade can be 
set subjectively. The grade can also be determined by setting a 
threshold for the comprehensive evaluation value. However, at 
present there is no unified threshold standard, and there may be 
a problem in that the threshold is not applicable due to regional 
differences. Therefore, when the comprehensive evaluation 
value is taken as the evaluation standard (such as in the entropy 
method, TOPSIS), the number of samples for each grade can only 
be divided in a subjective way. Table II shows the evaluation 
results of 12 evaluation units using the two methods. With the 
entropy method, after sorting the comprehensive evaluation 
value, the number of each category is divided subjectively and 
equally. Compared with the PSO-Kmeans method, X9 changed 
from high to medium-high, and X12 and X5 from low to medium. 
As can be seen from Figure 9, X9 and X8 are the two regions 
with the most abundant resources, and the other three indicators 
are not significantly different. Using subjective division, the 
two areas are rated at different grades. Only taking them as an 
evaluation category can highlight the great differences between 
them and other regions under the common characteristics, and 
the evaluation will be more reasonable. As can be seen from 
Figure 11, the waste emission intensity in X1 is very high 
– thousands of times greater than in X5 and X12 while the 
differences in the other three indicators are very small. However, 
in the subjective division, X5, X12, and X1 are classified in the 
same grade. At the same time, it can be seen from Figure 4 that 
X1 has become very different from other regions. Therefore, it is 
more reasonable to treat X1 as a category by itself. PSO-Kmeans 
is data-driven and classifies high and low based on the principle 
of similarity to solve the subjective division of the number of 
samples for each grade.

Discussion of the evaluation results

Discussion under a single indicator
According to the evaluation results of the PSO-Kmeans algorithm, 
the mineral resources carrying capacity of the Panxi area is 
divided into four levels. The carrying capacity of the evaluation 
unit clustered by the PSO-Kmeans algorithm is used as the base 
map, and each evaluation index element is superimposed on the 
carrying capacity base map. Figure 8 reveals that the evaluation 
unit with a high regional economic support occurs in the region 
with high and medium-high carrying capacity levels. Figure 9 
shows that the evaluation unit with a relatively short sustainable 
life of the regional mineral resources is the region with medium 
and low carrying capacities. Figure 10 demonstrates that the 
difference in the index of regional ecological restoration degree 
is not too large, and the better evaluation unit is the region with 
high and medium-high carrying capacity levels. Figure 11 shows 
that the mining waste emission index is high in the region with a 
low carrying capacity. Therefore, in the discussion under a single 
index, the evaluation result after clustering with the PSO-Kmeans 
algorithm is reasonable.

Discussion and suggestions for the results under  
comprehensive indicators
The evaluation method based on the PSO-Kmeans algorithm 
can better meet the needs of grade evaluation of the mineral 
resources carrying capacity of the Panxi region. After the 
evaluation grade has been objectively determined, the four 
indexes are superimposed. By combining the index data collected 
in the early stage and the superimposed graph, as shown in 
Figure 12, the following can be concluded.

Figure 8—Carrying capacity map and mining support for the economy 
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Xichang, Yanbian, and Miyi, with high carrying capacity 
levels, are rich in mineral resources with a long sustainable 
life. The high output of mineral products generates a high level 
of economic support and suitable conditions for ecological 
restoration. Although the sustainable life of Mianning’s mineral 

resources is short, it has high degree of economic support and 
suitable ecological restoration. Therefore, in the short term, its 
carrying capacity is still high, but will decrease if resources are 
rapidly exhausted. Therefore, X11 also shows greater uncertainty 
after adding virtual samples.

Figure 9—Carrying capacity map and resource support for mining 

Figure 10—Carrying capacity map and degree of restoration of damaged areas  
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The medium-high carrying capacity levels of Huidong and 
Ningnan are attained despite the low output of mineral products, 
and the region is highly dependent on the mineral economy, 
while its resources have a long sustainable life and the degree 
of ecological restoration is acceptable. The carrying capacity is 
relatively high in the short term but may be increased if mining 
output is moderately increased in the later period.

The medium carrying capacities of Yanyuan, Dechang, 

Huili, Xide, and Yue Xi are a result of very low mineral outputs, 
and there are no mining activities in certain areas. The mining 
economy is severely contracted, but ecological restoration is still 
being carried out. Therefore, the short-term carrying capacity is 
medium, but after ecological restoration reaches a certain level 
and mineral resources are developed and exploited, the carrying 
capacity will increase.

Dongqu, which has a low carrying capacity, has a high 
output of mineral products and a high degree of support for 
the economy, but its resources have a short sustainable life. 
Dongqu’s high output and small area result in a high intensity of 
pollutant discharge per square kilometre of ore production in the 
area, and a low degree of ecological restoration. Therefore, in the 
short term, if the output is not controlled, the carrying capacity 
will decrease.

Conclusion
Mineral resources carrying capacity is an important indicator 
of the sustainable development potential of regions whose 
economies are based on mineral resources. To comprehensively 
evaluate the regional mineral resources carrying capacity and 
solve the problem of subjective division of the number of samples 
for each grade, a mineral resources carrying capacity evaluation 
model based on the PSO-Kmeans algorithm is proposed. This 
paper takes the Panxi region as an example and applies the PSO-
Kmeans algorithm to carry out a grade evaluation of the mineral 
resources carrying capacities, which provides a basis for the 
relevant authorities to formulate sustainable utilization policies 
for mineral resources.

Figure 11—Carrying capacity map and mining waste emission index

Figure 12—Evaluation of the unit indexes and grade comparison
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This paper applies the improved data mining algorithm to the 
objective evaluation of the mineral resources carrying capacity. 
Because there are only 12 (city) counties in the area where 
iron ore mining and production are carried out, the number of 
possible evaluation units is small. However, iron ore is being 
mined in only 14 cities in the whole province. The evaluation 
model proposed in this paper is generated from the actual needs 
of the research area, and it is necessary to apply an objective 
data-mining algorithm in practice. Therefore, it is proposed 
to construct virtual samples and verify the algorithm through 
the virtual samples under the premise of the UCI data-sets 
verification. The next step is to evaluate the mineral resources 
carrying capacity of an entire province based on the unit of a 
city and the PSO-Kmeans algorithm model. The PSO-Kmeans 
algorithm evaluation model should also be applied to other 
resources and environmental carrying capacity fields.

Acknowledgements
This research is supported by the Opening Fund of the 
Geomathematics Key Laboratory of Sichuan Province (No. 
scsxdz2019yb06). Also thank these funds for their support: 
the Geomathematics Key Laboratory of Sichuan Province 
(NO. scsxdz2019zd02); Sichuan Mineral Resources Research 
Center(No. SCKCZY2019-ZD002); Sichuan Mineral Resources 
Research Center(No. SCKCZY2019-ZC002).

References
Bakhtavar, E. and Yousefi, S. 2019. Evaluation of shaft locations in underground 

mines: Fuzzy multiobjective optimization by ratio analysis with fuzzy 
cognitive map weights. Journal of the Southern African Institute of Mining and 
Metallurgy, vol. 119, no. 10. pp. 855–864.

Celestino, A.E.M. and Cruz, D.A.M. Groundwater quality assessment: An improved 
approach to K-means clustering, principal component analysis and spatial 
analysis: A case study. Water, vol. 10. pp. s437. doi:10.3390/w10040437

Civicioglu, P. and Besdok, E. 2013. A conceptual comparison of the Cuckoo-search, 
particle swarm optimization, differential evolution and artificial bee colony 
algorithms. Artificial Intelligence Review, vol. 39. pp. 315–346. doi: 10.1007/
s10462-011-9276-0

Cui, C-Q., Wang, B., Zhao, Y-X., and Wang, Q. 2019. China's regional sustainability 
assessment on mineral resources: Results from an improved analytic hierarchy 
process-based normal cloud model. Journal of Cleaner Production, vol. 210.  
pp. 105–120. https://doi.org/10.1016/j.jclepro.2018.10.324

Ding, Z. 2013. A small sample clustering algorithm by generating random samples 
from Gaussian distribution. Computer Knowledge and Technology, vol. 9,  
no. 29. pp. 6609–6611.

Fana, Y. and Fang, C. 2020. Evolution process analysis of urban metabolic patterns 
and sustainability assessment in western China, a case study of Xining 
city. Ecological Indicators, vol. 109. pp. 105784. https://doi.org/10.1016/j.
ecolind.2019.105784

Guo, Q. 2018. A comprehensive evaluation model of regional atmospheric 
environment carrying capacity: Model development and a case study in China. 
Ecological Indicators, vol. 91. pp. 259–267.

Hou, H-L. 2007. Research status and development of carrying capacity of mineral 
resources. Proceedings of the 2007 Annual Conference of China Geological and 
Mineral Economics Association.

Jia, R-Y. and Li, Z. 2016. The level of K-means clustering algorithm based on the 
minimun spanning tree. Microelectronice & Computer, vol. 33, no. 3. pp. 86–93.

Ismkhan, H. 2018. I-k-means An iterative clustering algorithm based on an enhanced 
version of the k-means. Pattern Recognition, vol. 79. pp. 402–413. https://doi.
org/10.1016/j.patcog.2018.02.015

Javadi, S., Hashemy, S.M., Mohammdi, K., and Howard, K.W.F. 2017. Classification of 
aquifer vulnerability using K-means cluster analysis. Journal of Hydrology,  
vol. 549. pp. 27–37. https://dx.doi.org/10.1016/j.jhydrol.2017.03.060

Lei, X-F., Xie, K-Q., Lin, F., and Xia, Z- Y. 2008. An efficient clustering algorithm 
based on local optimality of K-means. Journal of Software. pp. 1683–1692.

Leote, P., Cajaiba, R.L., and Cabral, J.A. 2020. Are data-mining techniques useful 
for selecting ecological indicators in biodiverse regions? Bridges between 
market basket analysis and indicator value analysis from a case study in the 
neotropics. Ecological Indicators, vol. 109.p. 105833. https://doi.org/10.1016/j.
ecolind.2019.105833

Li, M. and Lyu, Y. 2018. Evaluation of the bearing capacity of the coal resources in 
Taiyuan city. China Mining Magazine, vol. 27, no. 6. pp. 62–65.

Liu, L., Peng, X., and Wu, H. 2018. Fast identification of urban sprawl based 
on K-Means clustering with population density and local spatial entropy. 
Sustainability, vol. 10. p. 2683. doi:10.3390/su10082683

Niknam, T. and Amiri, B. 2010. An efficient hybrid approach based on PSO, ACO and 
k-means for cluster analysis. Applied Soft Computing, vol. 10. pp. 183–197. 
doi:10.1016/j.asoc.2009.07.001

Saisana, W.B.M., Paruolo, P., and Vandecasteele, I. 2017. Weights and importance in 
composite indicators: Closing the gap. Ecological Indicators, vol. 80. pp. 12–22. 
https://dx.doi.org/10.1016/j.eecolind.2017.03.056

Salehnia, N., Ansari, H., and Kolsoumi, S. 2019. Climate data clustering effects on arid 
and semi-arid rainfed wheat yield: a comparison of artificial intelligence and 
K-means approaches. International Journal of Biometeorology, vol. 63.  
pp. 861–872.

Shi, Y.E. 1998. RCA modified particle swarm optimizer. Evolutionary Computation. 
Prcoceedings of the 1998 IEEE World Conferemce on Computation Intelligence. 
pp. 69–73. IEEE, New York. 

Sun, Y-H., Li, Z-S., and He, P-L. 2008. K-means clustering algorithm based on local 
search mechanism. Computer Engineering, vol. 34,, no. 11. pp. 15–17.

Talebi, H., Mueller, U., and Tolosana-Delgado, R. 2019. Geostatistical simulation 
of geochemical compositions in the presence of multiple geological units: 
Application to mineral resource evaluation. Mathematical Geosciences, vol. 51. 
pp. 129–153. https://doi.org/10.1007/s11004-018-9763-9

Wang, Q., Wang, Y., and Niu, R. 2017. Integration of information theory, K-means 
cluster analysis and the logistic regression model for landslide susceptibility 
mapping in the Three Gorges Area, Chin. Remote Sensing, vol. 9. p. 938. doi: 
10.3390/rs9090938

Wang, R., Cheng, J., Zhu, Y., and Xiong, W. 2016. Research on diversity of mineral 
resources carrying capacity in Chinese mining cities. Resources Policy, vol. 47. 
pp. 108–114.

Wang, Y. and Wang, D. 2010. Clustering study of fabric deformation comfort using 
bi-swarm PSO algorithm. Journal of Textile Research, vol. 31, no. 4. pp. 60–64.

Wang, Y-P. 1998. Population carrying capacity of mineral resources. China 
Population Resources and Environment, vol. 8, no. 3. pp. 19–22.

Wanga, D., Shi, Y., and Wan, K. 2020. Integrated evaluation of the carrying capacities 
of mineral resource-based cities considering synergy between subsystems. 
Ecological Indicators, vol. 108. https://doi.org/10.1016/j.ecolind.2019.105701

Wei, H. 2013. Improved hierarchical K-means clustering algorithm. Computer 
Engineering and Applications, vol. 49, no. 2. pp. 157–159.

Wei, J. 2006. Analysis on mineral resource carry capacity competitiveness and 
sustainable power in Hel Long Jang province. China Mining Magazine, vol. 15, 
no. 11. pp. 102–109.

Xie, G-D. and Zhou, H.L. 2005. Analysis of carrying capacity of natural resources in 
China. China Population, Resources and Environment, vol. 15, no. 5.  
pp. 93–97.

Xie, X-H. and Li, T-S. 2014. An optimized K -means clustering algorithm based on 
improved particle swarm optimization. Computer Technology and Development, 
vol. 24, no. 2. pp. 34–38.

Xiong, K-L, Peng, J-J., and Yabg, X-F. 2017. K-means clustering optimization based 
on kernel density estimation. Computer Technology and Development, vol. 27, 
no. 2. pp. 1–5.

Xu, D., Xu, Y., and Zhang, D. 2018. A survey on the initialization methods for the 
K-means algorithm. Operations Research Transactions, vol. 22, no. 2.  
pp. 31–40.

Xu, H. and Li, S-J. 2011. A clustering integrating particle swarm optimization and 
K-means algorithm. Journal of Shanxi University (Natural Science Edition), 
vol. 34, no. 4. pp. 518–523.

Xua, H., Ma, C., Lian, J., Xu, K., and Chaima, E. 2018. Urban flooding risk assessment 
based on an integrated k-means cluster algorithm and improved entropy weight 
method in the region of Haikou, China. Journal of Hydrology, vol. 563.  
pp. 975–986.

Yang, J., Yu, X., Xie, Z-Q., and Zhang, J-P. 2011. A novel virtual sample generation 
method based on Gaussian distribution. Knowledge-Based Systems, vol. 24.  
pp. 740–748.

Yang, Y. 2016. Improved K-means dynamic clustering algorithm based on 
information entropy. Journal of Chongqing University of Posts and 
Telecommunications (Natural Science Edition), vol. 2. pp. 254–59. 
doi:10.3979/j.issn.1673-825X.2016.02.018

Ye, Z-W., Yin, Y-J., Wang, <-W., and Zhao, W. 2015. A clustering approach based on 
cuckoo search algorithm. Microelectronice & Computer, vol. 32, no. 5.  
pp. 104–110.

Yu, S-S., Chu, S.W., and Wang, C-M. 2018. Two improved k-means algorithms. 
Applied Soft Computing, vol. 68. pp. 747–755. https://doi.org/10.1016/j.
asoc.2017.08.032

Zhu, B. Chen, Z., and Yu, L. 2016. A novel mega-trend-diffusion for small sample. 
CIESC Journal, vol. 67, no. 3. pp. 820–826.     u


